2024年最强副业兼职:通过AI绘画(Stable Diffusion)赚到人生中第一桶金!

前言

在当今的数字化时代,人工智能(AI)的应用已经无处不在。其中,Stable Diffusion是最新的AI绘画生成工具,它可以根据用户输入的文本描述生成相应的图像。这种技术的出现,为社交媒体内容创作者、插画师、平面设计师等提供了无限的可能性,也带来了新的赚钱机会。抖音上面已经有很多脑子活络的用户探索出很多赚钱的机会,比如:微信公众号(抖音)每天发布生成的美女图片(吸引LSP),老照片修复、一键换脸、生成壁纸和视频生成等方面的商业机会

![](https://i-
插画师:使用Stable Diffusion,你可以根据客户的要求生成各种插画,如动漫推广插画、儿童图书插图、杂志插图等。

平面设计师:你可以使用这个工具来生成海报、宣传单、网站设计元素等。

社交媒体内容创建者:如果你擅长社交媒体营销,你可以使用Stable Diffusion来创建引人注目的图像和视频,以吸引更多的关注者。

产品设计师:你可以使用这个工具来为新产品生成原型或概念图。

动画师:Stable Diffusion也可以用来创建动画或电影的概念艺术。一、老照片修复

尽管Stable Diffusion的主要功能是根据文本生成图像,但它可能也可以应用于老照片的修复。通过使用深度学习和计算机视觉技术,Stable Diffusion可以帮助我们修复照片中的裂纹、水渍和褪色等问题。这不仅能让我们重温过去的回忆,也为专业的照片修复服务提供了新的可能性。

整理和输出教程属实不易,觉得这篇教程对你有所帮助的话,可以点击👇二维码领取资料😘
在这里插入图片描述

二、一键换脸

Stable Diffusion的另一个潜在应用是一键换脸。你可以输入描述你想换的脸的文本,比如"一张笑脸"或"一张严肃的脸",然后让AI生成相应的图像。这种功能可以用于创建有趣的社交媒体内容,或者用于电影和游戏中的角色设计。

三、生成精美的壁纸

Stable Diffusion也可以用来生成精美的壁纸。你可以输入描述你想要的壁纸的文本,比如"一片繁星点点的夜空"或"一片金黄色的麦田",然后让AI生成相应的图像。这样,你就可以创建出个性化的壁纸,满足用户的个性化需求。

四、生成视频

尽管Stable Diffusion主要用于生成静态图像,但理论上,它也可以用于生成视频。通过输入描述视频中的场景和动作的文本,AI可以生成一系列的图像,然后将这些图像组合成视频。这为视频制作和动画制作提供了新的工具和可能性。

五、部署属于我们自己的Stable Diffusion

部署SD可以在自己电脑上面部署,也可以在云端部署,本地部署需要内存大于等于16G,显卡显存>=8G以上

有些人的电脑显卡配置估计达不到,刚开始简单的操作还好,玩到后面,越来越吃力,稍微复杂一点的操作就死机,云部署就派上用场了那我们用阿里云的配置,几步就能部署成功,能免费使用3个月。部署步骤我放在了下面的链接

这里直接将该软件分享出来给大家吧~
在这里插入图片描述

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

在这里插入图片描述

<think>嗯,用户问的是关于“SD模型炼丹”,也就是Stable Diffusion模型的训练和微调。首先,我需要确认用户对SD模型的基础了解程度。可能用户已经知道Stable Diffusion是什么,但想进一步学习如何训练自己的模型。 接下来,我应该解释清楚什么是“炼丹”,也就是模型训练的过程。需要分步骤说明,从准备数据到训练技巧,再到应用场景。用户可能对技术细节感兴趣,但作为副业,他们可能更关注实际应用和变现方式。 要考虑到用户可能的背景,或许他们有一定的技术基础,但需要指导如何入门。需要推荐一些工具和平台,比如Hugging Face、Colab,还有常用的库如Diffusers。同时,要提醒注意事项,比如版权问题,硬件需求,避免常见错误。 用户可能想知道如何将训练好的模型变现,所以要列出几个可行的途径,比如模型售卖、定制服务、内容创作等。这部分需要具体案例,比如在Civitai上出售模型,或者接企业定制项目。 还要注意回答的结构,按照之前的格式,分点说明,保持清晰。同时,确保使用正确的中文术语,避免翻译错误。比如“微调”而不是“fine-tuning”的直译。 另外,用户可能在寻找副业方向,所以需要强调低成本和可操作性,比如使用现有平台和开源工具,减少初期投入。提醒他们时间和资源管理的重要性,比如数据标注的耗时和硬件要求。 最后,检查是否有遗漏的关键点,比如训练技巧中的学习率调整、数据增强,或者应用场景中的具体例子。确保回答全面且实用,帮助用户真正开始他们的SD模型训练副业。</think>以下是关于**Stable Diffusion(SD)模型训练与微调(俗称“炼丹”)**的详细介绍,涵盖技术原理、操作流程和变现方向: --- ### 一、SD模型基础概念 #### 1. **什么是“炼丹”** - **定义**:通过调整模型参数或输入数据,让SD模型生成特定风格的图像(如动漫风、写实摄影、品牌视觉等)。 - **常见类型**: - **Checkpoint模型**:完整训练新模型(需高算力) - **LoRA模型**:轻量微调(适合个人开发者) - **Textual Inversion**:通过关键词触发特定风格 #### 2. **技术原理** - **核心机制**:通过反向扩散过程(Diffusion)逐步去除噪声生成图像 - **训练关键**: - **数据集**:图像+标签(需规范标注) - **Loss函数**:计算生成图与目标图的差异 - **学习率**:控制参数更新速度(过高会失真,过低效率低) --- ### 二、炼丹全流程指南(以LoRA为例) #### 1. **准备阶段** - **硬件需求**: - 最低配置:RTX 3060(12GB显存) - 推荐配置:RTX 4090/A100(可租赁Google Colab或AutoDL) - **软件工具**: - WebUI:AUTOMATIC1111/Kohya_SS - 库:Diffusers、Hugging Face Transformers #### 2. **数据准备** - **数据集要求**: - 风格统一:建议20-50张同类型图片 - 分辨率:512×512或768×768(需统一) - 标注格式:`.txt`文件描述每张图(可用WD14标签器自动生成) - **预处理工具**: - 去重:`ImageDedup` - 增强:`Albumentations`(旋转/裁剪/调色) #### 3. **训练参数设置** ```python # 典型LoRA配置(kohya_ss GUI) { "learning_rate": 1e-4, "batch_size": 4, "max_train_steps": 1000, "network_dim": 128, "optimizer": "AdamW8bit", "mixed_precision": "fp16" } ``` #### 4. **训练技巧 - **防止过拟合**: - 正则化:Dropout率设为0.1-0.3 - 早停法(Early Stopping) - **提升效果**: - 渐进式学习率(Cosine衰减) - 分层训练(先练整体结构,再调细节) --- ### 三、变现方向 #### 1. **模型售卖** - **平台**: - Civitai(国际社区,高流量) - 吐司(国内平台,支持RMB结算) - **定价策略**: - 通用模型:$5-15/次下载 - 定制模型:$200+/项目 #### 2. **企业服务** - **案例**: - 电商:生成产品宣传图(需配合ControlNet控制姿势) - 游戏:快速产出角色/场景概念图 - 广告:批量生成A/B测试素材 #### 3. **内容创作** - **NFT生成**:用SD制作系列化数字藏品 - **自媒体素材**:生成配图+AI配音(如抖音科普视频) --- ### 四、常见问题与避坑指南 1. **显存不足报错**: - 解决方案:启用`--medvram`参数,或减小`batch_size` 2. **人物脸部崩坏**: - 修复方法:训练时添加`<lora:detail_face:0.8>`触发词 3. **版权风险**: - 合规建议:使用CC0协议图片训练,或购买Shutterstock数据集 --- ### 五、学习资源推荐 1. **入门教程**: - Hugging Face官方文档《Fine-tuning Stable Diffusion》 - B站:秋葉aaaki的《SD-WebUI保姆级教程》 2. **进阶工具**: - 超参优化:Weights & Biases(可视化训练过程) - 模型融合:Merge Block Weight脚本 --- **启动建议**: 可从微调现成模型(如`Counterfeit-V3`)开始,尝试输出小红书风格插画(需关键词`pastel color, flat illustration`),测试市场需求后再投入深度开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值