ComfyUI基础教程1-入门必看/安装/必装节点!

前言

AI文案生产部分暂时告一段落,接下来我会集中制作ComfyUI系列的小白教程,所以如果你也跟我一样希望系统性的学习ComfyUI,现在就上车,我们一起探索ComfyUI的世界吧,因为,我也是个初学者,所以你遇到的问题大概率我也会遇到,而我也会将这些问题的解决方案记录下来,供你参考。

好了,接下来就正式进入我们的探索之旅吧,本篇主要内容:

1、ComfyUI安装步骤

2、ComfyUI必装节点


所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~

在这里插入图片描述

一、安装ComfyUI

1. 下载ComfyUI主程序:

2. 解压后,点击根目录的 run_nvidia_gpu 运行,这里建议用 7-zip 来解压;

解压成功后双击 run_nviddia_gpu.bat 程序,这时你会进入命令提示符窗口,当窗口运行出现下面网址时,不出意外的话会自动跳转到ComfyUI的主页面,这时,恭喜你,已经安装成功了。

二、常用节点安装

1. ComfyUI-Manager 功能安装,这个功能可以帮你更轻松的实现模型下载、节点下载等功能,建议安装。

  1. 进入 ComfyUI/custom_nodes目录

在这里插入图片描述

1.2. 在目录空白处点击右键,点击在终端中打开,或者是点击文件夹上分目录栏,选中后输入 cmd 打开终端。

1.3. 终端中输入:git clone https://github.com/ltdrdata/ComfyUI-Manager.git

1.4. 如果出现下面这种情况,需要打开科学上网,然后重新运行命令即可;

1.5. 安装成功后,刷新页面,就可以看到 Manager 按钮了:

在这里插入图片描述

2. 安装汉化

2.1 打开Manager,选择 Custom Nodes Manager

2.2 搜索 Translation 并安装

tips1:如果出现错误,可以使用终端安装,方法同 Manager ;对了,如果你不知道 git clone 后面的网址是什么,可以在搜索到的 Translation ,用ctrl + 左键 打开获取。

tips2:正常来说,安装成功后刷新后即可自动显示成中文,但是我遇到的情况是没有自动显示,后来尝试了更新,然后重启后显示成功的;

3.安装comfyui-workspace-manager

3.1 在 custom_nodes 根目录下,终端中运行 git clon + 网址;

安装成功后刷新页面,左上角会显示模型管理界面

这里面会有已经安装的模型

如果需要下载新模型,只要点击 Install Models,即可跳转到模型下载界面:

好了,到这里我们的基础部分已经完成了,后面会正式进入工作流的搭建,我们拭目以待吧。

对了,如果你也跟我一样,是个新手,那么就跟我一起干点难而正确的事情吧,我们下期再见。

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

img

<think>嗯,用户之前问了AI绘画参数调优和大模型训练技巧,现在又转向ComfyUI的学习教程。看来他们可能在使用Stable Diffusion的过程中遇到了界面或工作流程的问题,想要更高效或灵活的工具。ComfyUI作为一个节点式的工作流工具,确实比WebUI更复杂,但功能更强大。用户可能需要从基础开始,逐步了解节点连接和参数调整。 首先,用户可能对节点式界面不熟悉,需要解释基本概念,比如节点是什么,如何连接。然后,可能需要分步骤的入门指南,从安装到简单工作流,再到高级技巧。他们可能还关心实际应用案例,比如如何结合ControlNet或LoRA,这些在之前的讨论中已经涉及过,所以需要联系起来,说明如何在ComfyUI中应用这些技术。 另外,用户可能希望了解资源推荐,比如视频教程或社区,这样他们可以自主学习。还要注意用户可能的痛点,比如工作流崩溃或性能优化,需要给出常见问题解答,帮助他们解决问题。最后,确保回答结构清晰,用代码示例和配置说明来增强实用性,同时保持口语化,避免过于技术化的术语,让用户容易理解。</think>以下是为您整理的**ComfyUI深度使用指南**,包含从基础配置到高级工作流的完整知识体系: --- ### **一、核心概念解析** #### **1. 节点式架构优势** - **可视化编程**:通过连接`采样器->解码器->预览`实现完整生成流程 - **模块复用**:保存常用节点组合为`模板.json`文件(支持跨项目调用) - **性能监控**:内置显存占用实时显示(比WebUI节省约15%显存) #### **2. 关键节点说明** | 节点类型 | 功能描述 | 推荐参数 | |---------|----------|----------| | **KSampler** | 采样控制核心 | steps=25, cfg=7.5, sampler=`dpmpp_2m` | | **CLIP Text Encode** | 提示词编码器 | 支持`BREAK`分隔符控制权重 | | **VAE Decoder** | 潜空间解码 | 启用`taesd`加速解码(速度提升3倍) | | **ControlNet Apply** | 多条件控制 | 权重范围0.6-1.2,超过1.5易导致畸变 | --- ### **二、快速入门实战** #### **1. 基础工作流搭建** ```python # 最小化生成流程节点连接 { "nodes": [ {"id": 1, "type": "CheckpointLoaderSimple", "inputs": {"ckpt_name": "v1-5-pruned.safetensors"}}, {"id": 2, "type": "CLIPTextEncode", "inputs": {"text": "masterpiece, (cat:1.2)", "clip": [1,1]}}, {"id": 3, "type": "KSampler", "inputs": {"model": [1,0], "positive": [2,0], "latent_image": [4,0]}}, {"id": 4, "type": "EmptyLatentImage", "inputs": {"width": 512, "height": 512}} ] } ``` #### **2. 参数联动技巧** - **动态分辨率**:连接`Math节点`实现`width = height * 1.618`(黄金比例) - **条件分支**:用`Switch节点`根据step数切换提示词(如step>15时减弱风格强度) #### **3. 工作流调试方法** - **断点测试**:右键点击节点选择`Bypass`临时禁用后续流程 - **数据探针**:在连线处按住`Ctrl`显示中间潜变量状态 --- ### **三、高级应用案例** #### **1. 多ControlNet协同控制 ```json { "nodes": [ {"id": 5, "type": "ControlNetLoader", "inputs": {"control_net_name": "canny.pth"}}, {"id": 6, "type": "ControlNetApply", "inputs": {"conditioning": [2,0], "control_net": [5,0], "image": "canny_edge.png"}}, {"id": 7, "type": "ControlNetLoader", "inputs": {"control_net_name": "openpose.pth"}}, {"id": 8, "type": "ControlNetApply", "inputs": {"conditioning": [6,0], "control_net": [7,0], "image": "pose_image.png"}} ] } ``` - **权重分配**:首个ControlNet建议0.8,后续每个降低0.1-0.2 - **冲突解决**:当姿势与构图冲突时,优先保证`OpenPose`的权重 #### **2. LoRA融合技术 ```python # 加载多个LoRA并进行混合 from nodes import LoraLoader lora1 = LoraLoader().load_lora(model=base_model, lora_name="style1.safetensors", strength=0.7) lora2 = LoraLoader().load_lora(model=lora1[0], lora_name="detail.safetensors", strength=0.3) ``` #### **3. 视频生成工作流 1. 使用`Video Combine`节点连接每帧输出 2. 设置`Interpolate`节点实现帧间补间(推荐RIFE算法) 3. 通过`FFmpeg`节点导出为MP4(CRF值设为18-23) --- ### **四、性能优化方案** #### **1. 显存管理技巧** - **分块加载**:对超过1024x1024的图像启用`Tile VAE` - **模型卸载**:设置`--lowvram`模式自动清理未使用模型 #### **2. 加速渲染参数** ```yaml # 启动参数优化(NVIDIA显卡) --force-fp16 --opt-split-attention --opt-sub-quadratic ``` #### **3. 分布式工作流** - 将`生成->超分->后处理`分配到不同GPU执行 - 用`Queue`节点实现异步流水线 --- ### **五、常见问题排错** | 异常现象 | 解决方案 | |---------|----------| | 节点连线混乱 | 按`Ctrl+Shift+A`自动排列布局 | | 工作流崩溃 | 检查节点版本兼容性(尤其ControlNet相关节点)| | 输出全黑图 | 确认VAE模型与主模型匹配 | | 提示词失效 | 检查CLIP跳过层数(建议2-4层)| --- ### **六、学习资源推荐** - **官方文档**:[ComfyUI GitHub Wiki](https://github.com/comfyanonymous/ComfyUI/wiki) - **视频教程**:B站搜索"ComfyUI节点式大师课" - **模板仓库**:[ComfyUI-Examples](https://github.com/comfyanonymous/ComfyUI_examples) - **社区支持**:加入Discord官方频道获取实时帮助 --- 如果需要具体工作流模板(如动画生成/模型融合/批量处理),可提供您的应用场景,我将给出针对性配置方案! 🎨
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值