Stable Diffusion 系列教程 - 3 模型下载和LORA模型的小白入门

前言

**首先,一个比较广泛的模型下载地址为

黄框是一些过滤器,比如checkpoints可以理解为比如把1.5版本的SD模型拷贝一份后交叉识别新的画风或场景后得到的模型,可以单独拿出来使用。 Hypernetwork和lora在特定场景下都非常好用。我们以majicMIX realistic 麦橘写实模型为例子,点开:

点开一张照片,我们能看到生成这张照片的提示词和负提示词以及cfg scale,甚至往下拉还有推荐的优质参数和评论区。下载好模型后,将其放到stablediffusion-webui —> models —> Stable-diffusion 目录下。随后在webUI中点击大模型的下拉框,即可切换(需要等待一定时间)。

实际使用中,我们发现生成的和网页给我们的感觉差距是非常大的,其中有很重要的一点是没有阅读模型的说明书。 其在模型页面下方,

所有的AI设计工具,模型和插件,都已经整理好了,👇获取~在这里插入图片描述


LoRA训练

**环境:秋叶大佬的安装包 [LoRA WebUI]

数据集:图片和标签。如何做:

  • 打开Web UI。点击训练,再点击图像预处理:复制存放图像的文件夹到源目录,复制标签和预处理后的图像需要存放的文件夹到目标目录。宽度高度根据自己的需要去设置,这代表着预处理后的图像大小。

  • 勾选使用deepbooru生成说明文字tag。点击预处理,自动处理完成后即可得到标签文件。

  • 对标签进行修改。由于标签是****deepbooru图生文模型生成的,不一定那么准确。因此需要去对生成的标签做处理。这里先不讲如何打Tag,直接进行下一步。
  • 进入秋叶大佬的炼丹器,点击LORA训练-新手(本节只过新手场)。添加底模路径(再SD的模型文件夹中添加一个大模型即可。)

  • 添加训练数据集路径: 最好将你的数据集放到lora-scripts-v1.7.3\train\下。在这个目录中创建一个文件夹为你数据集名称,随后再创建一个文件夹为 数字_数据集名称。如上图所示。20代表每一个epoch中单张图片的训练次数,比如epoch=10,则一张图像的实际训练次数是10×20=200次。在train_data_dir中只填前一级目录
  • 其他参数尽量先不调,直接开始训练。

  • 复制lora模型:将Output文件夹中的lora模型文件拷贝到SD WebUI的models/Lora文件夹中。没有数字的代表最终结果,有数字的代表不同阶段的结果。

  • 加载lora模型:在文生图这一页点击“启用”LoRA。随后选择刚才复制过来的LoRA模型。就可以生成啦。(权重建议调到0.8)


注:,我们直接对txt中的tag处理是非常不方便的,因此就需要:题词管理工具(毛子开发) 。链接我放到下方:链接:https://pan.baidu.com/s/1dAhvm-DBI9o62aWd1T1Csw 提取码:zub1

打开exe, 左上角File打开训练集目录,就可以看到当前图片和当前图片的标签。最右侧为所有图片的Tag。我们可以通过中间栏调整单个图片的Tag,也可以通过右边这一栏添加或删除所有图片中相同的Tag。双击图像可以查看细节。,修改完全部后再次点击左上角的Save。

此外,还能有翻译功能,在左上角File的setting中:

点击下方,即可进行自动翻译:

这里分享给大家一份Adobe大神整理的《AIGC全家桶学习笔记》,相信大家会对AIGC有着更深入、更系统的理解。

有需要的朋友,可以点击下方免费领取!

在这里插入图片描述

AIGC所有方向的学习路线思维导图

这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。如果下面这个学习路线能帮助大家将AI利用到自身工作上去,那么我的使命也就完成了:
在这里插入图片描述

AIGC工具库

AIGC工具库是一个利用人工智能技术来生成应用程序的代码和内容的工具集合,通过使用AIGC工具库,能更加快速,准确的辅助我们学习AIGC
在这里插入图片描述

有需要的朋友,可以点击下方卡片免费领取!

在这里插入图片描述

精品AIGC学习书籍手册

书籍阅读永不过时,阅读AIGC经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验,结合自身案例融会贯通。

在这里插入图片描述

AI绘画视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,科学有趣才能更方便的学习下去。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值