Stable Diffusion 官方模型V1.5版本下载

模型描述

Stable Diffusion的官方模型更适合绘制偏写实的风格,如果您想绘制二次元之类的风格,可以考虑下载本站的其它模型。

安装方法

将模型下载后,将会得到一个名为****.ckpt格式的文件,将该文件剪切至你的Stable Diffusion本地安装目录,例如站长在测试时所使用的路径为:D:\openAI\stable-diffusion-webui\models\Stable-diffusion,请根据自身请问调整模型存放位置。

更新详情

Stable Diffusion的官方模型V1.5与V1.4比起来,整体画面构成区别不大,色阶对比度和光源渲染提升,光源效果更加平滑合理。

资源详情

本次Stable Diffusion的官方模型V1.5版本一共提供了两个模型,一个3.97GB,另一个是7.17GB。

两个模型的区别如下

  • 绘画版|3.97GB模型:推荐正常绘图的人使用,无需训练自己的模型。
  • 训练版|7.17GB模型:如果您想以该模型为基础,训练自己的模型。那么下载该模型可以得到更好的效果。

两个不同大小的模型任选其中一个下载即可,没必要两个都下载。

下载地址

也可以自行前往runwayml/stable-diffusion-v1-5 · Hugging Face下载相应文件。

预先训练模型加载

下载并缓存

DiffusionPipeline 类是从 Hub 加载最新趋势扩散模型的最简单、最通用的方法。DiffusionPipeline.from_pretrained() 方法自动从检查点检测正确的管道类,下载并缓存所有必需的配置和权重文件,并返回准备进行推理的管道实例。

from diffusers import DiffusionPipeline
 
repo_id = "runwayml/stable-diffusion-v1-5"
pipe = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)

从本地加载

若要在本地加载扩散管道,请使用 git-lfs 手动将模型(在本例中为 runwayml/stable-diffusion-v1-5 )下载到本地磁盘。这会在磁盘上创建一个本地文件夹 ./stable-diffusion-v1-5 , :

git-lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5

然后将本地路径传递给 from_pretrained():

from diffusers import DiffusionPipeline
 
repo_id = "./stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)

当 from_pretrained() 方法检测到本地路径时,它不会从 Hub 下载任何文件,但这也意味着它不会下载和缓存检查点的最新更改。

### 如何下载 Stable Diffusion v1.5 官方版本 要获取 Stable Diffusion v1.5官方版本,可以按照以下方式操作: #### 1. 访问 Hugging Face 页面 Hugging Face 是托管许多机器学习模型的主要平台之一。Stable Diffusion 各个版本通常会发布到该网站供开发者和研究人员使用。访问链接如下[^4]: ``` https://huggingface.co/runwayml/stable-diffusion-v1-5 ``` 在此页面上,你可以找到有关 Stable Diffusion v1.5 的具体信息以及下载选项。 #### 2. 注册并登录账户 为了能够顺利下载模型文件,需要注册一个免费的 Hugging Face 账户,并完成身份验证过程。这一步骤对于保护知识产权至关重要。 #### 3. 下载模型权重 一旦成功登录后,在上述网页中点击 **Download** 或者通过 API 接口拉取模型数据。注意,由于模型体积较大(约 4GB),建议准备足够的存储空间来保存这些文件[^5]。 #### 4. 使用本地环境运行模型 下载完成后,可以通过 Python 和 PyTorch 加载此预训练模型用于推理或微调任务。下面是一个简单的加载示例代码片段: ```python from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_auth_token=True) pipeline.to("cuda") # 如果有 GPU 支持的话 image = pipeline("A photograph of an astronaut riding a horse").images[0] image.save("astronaut_rides_horse.png") ``` 如果遇到显存不足等问题,则可参考相关解决方案[^2]调整配置参数以适应硬件条件。 --- ### 注意事项 需要注意的是,尽管目前仍能从公开渠道获得 Stable Diffusion v1.5 版本,但未来可能会因为版权或其他原因而改变其可用状态。因此及时备份所需资源是个不错的选择[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值