前言
2024年已经悄然离去,而崭新的2025年正等待着我们去探索和成长。如果你渴望在2025年深入学习ComfyUI,那么你来对地方了!这是一份精心准备的教程,它将为你开启通往ComfyUI世界的大门。在2024年下半年,我们对相关知识进行了系统的梳理和优化,这份教程将以更加深入、清晰、易懂的方式呈现给你,为你扫清学习道路上一切障碍,那么我们就从最基础的开始:ComyUI的本地部署。跟着操作起来吧,2025年,让我们扬帆起航!
===
所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~
===
二、ComfyUI的硬件环境要求
操作系统
推荐使用Windows10或Windows11系统;如何查看自己电脑的操作系统呢?
内存
内存大小建议:最低8G,越大越好。
查看系统内存容量:设置/设备规格/机带RAM
表示电脑的内存容量,如果小于8G,建议购买内存条对内存进行扩充。
显卡
建议使用英伟达40系列显卡,8G容量是最低要求,建议16G,可以在价格和性能取一个平衡。
查看显卡型号:
显示:NVIDIA GeForce RTX 4070 Ti SUPER
查看显卡容量:
查看路径:任务管理器/性能/GPU/专用GPU内存:
表示GPU容量为16G
硬盘
建议最低1T空间,越大越好,ComfyUI需要下载各种各样的大模型或插件,这些文件一般都比较大,随着ComfyUI的使用,电脑磁盘会越来越小,所以建议大家购买一个移动硬盘,专门用来ComfyUI的工作空间,这样既不会影响电脑磁盘的使用,而且还非常灵活便捷。
电源
最低400~600瓦左右
主板
无要求
CPU
无要求
三、ComfyUI的软件环境要求
安装Git
git是获取远程代码的工具,我们通过它将github或huggingface上的模型文件下载到本地。
1. 前往官网:https://git-scm.com/
2. 下载软件安装包,在下载之前,我们先确认一下操作系统的位数:
可知:操作系统的位数为64位。
注意:要下载和操作系统位数一致的安装包!!!这里下载64位的安装包。
3. 安装Git
我们需要记住安装的目录,因为我们需要将git写入环境变量。
4. 设置git环境变量
5. 检查是否安装成功
按住:Ctrl + x 组合键打开:
输入cmd,并点击确定按钮
输入git -v,如果输出git version 2.47.1.windows.1表示git安装成功了。
安装Python
python是ComfyUI运行环境,要求选择3.10及以上版本进行下载和安装
1. 前往官网: https://www.python.org/downloads/
2. 下载python安装包
下载3.11.9版本的python,这里注意要下载和操作系统位数一致的安装包。
3. 安装python
双击python安装包,就可以开始安装python了
这里我们重新制定一个python安装目录,注意尽量不要放在C盘,之后再点击Install,然后就是一直Next就可以了
4. 设置python环境变量
采用和Git一样的做法,将Python放在环境变量里。
5.检查是否安装成功
cmd中输入python -V,如果输出对应版本号,说明python安装成功了。
安装VisualStudioSetup
1. 前往官网:https://visualstudio.microsoft.com/zh-hans/
显卡驱动
1. 查看是否已经安装显卡驱动
按下 “Windows + X” 组合键,选择 “设备管理器”;或者按下 “Win + R” 键打开 “运行” 对话框,输入 “devmgmt.msc” 并按回车打开设备管理器。在设备管理器中,找到并展开 “显示适配器” 选项。如果显卡驱动已经装好,会显示显卡的详细信息,包括驱动程序的提供商和版本号;若驱动未装好或存在问题,则可能会显示黄色警告符号、问号,或者显示为 “标准 VGA 显示适配器”“未知设备” 等
2. 如果没有安装,前往官网:https://www.nvidia.cn/geforce/drivers/
3. 下载之后,安装即可
CUDA
CUDA 是 Compute Unified Device Architecture(计算统一设备架构)的缩写。
它是 NVIDIA(英伟达)公司推出的一种并行计算平台和编程模型,用于在 NVIDIA 的 GPU(图形处理器)上进行通用计算。这个架构使得 GPU 不再仅仅局限于图形渲染任务,还能够高效地执行各种复杂的计算任务,如科学计算、深度学习中的矩阵运算、数据处理等众多需要大规模并行计算的场景。
1. 查看cuda是否已经安装
cmd命令行执行命令:nvcc -V
nvcc -V 显示的是你实际安装的 CUDA 的版本。
2. 查看适配的CUDA型号
cmd打开命令行,执行命令:nvidia-smi
这里展示CUDA的版本号是与当前 GPU 驱动(driver)程序兼容的 CUDA 运行时版本。这是驱动程序支持的最高 CUDA 版本,并不是系统上安装的 CUDA的版本,基于向下兼容的原则,可以安装比这里展示版本小的CUDA,不能安装比这个版本高的CUDA,比如说安装12.8版本的CUDA,就会报错。
如果没有安装CUDA或者需要升级CUDA版本,可以通过下面的方式进行安装:
3. 前往CUDA官网
https://developer.nvidia.com/cuda-toolkit
获取以往版本:
我们选择CUDA Toolkit 12.4.0这个版本进行下载。下载之后双击即可进行安装。
4. 验证是否安装成功
cmd命令行执行命令:nvcc -V
说明CUDA已经安装成功了
cuDNN
cuDNN和CUDA是由英伟达提供的两个互补的工具,CUDA 提供了基础的 GPU 加速计算能力,而 cuDNN 则在 CUDA 之上构建,是深度学习框架(如 TensorFlow、PyTorch、Caffe 等)中的关键组件,能够显著提升训练和推理的速度和效率。所以我们想要激活显卡更强的画图性能。
1. 前往官网下载
https://developer.nvidia.com/cudnn-downloads
因为我们的CUDA的大版本是12,所以我们设置好上面的条件之后,就可以点击Download进行下载了。
2、解压下载好的cuDNN压缩包
里面包含下图所示的三个文件夹:
打开CUDA的安装文件夹(默认是:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4),将上面cuDNN解压的三个文件bin、include和lib分别复制粘贴到CUDA的文件夹中,如下图所示:
文件替换好后则cuDNN即为安装完成。
四、ComfyUI官方整合包安装
===
前往官网:https://github.com/comfyanonymous/ComfyUI
下载安装包专用解压工具:https://7-zip.org/
下载comfyui后,使用7z压缩包工具进行解压,结果过程比较慢,耐心等待。在启动ComfyUI之前,我们还需要给整合包安装加速组件:pytorch、onnxruntime、xformers。它们可以让ComfyUI更快地运行。
安装Pytorch
默认pip3已经随着python的安装而安装了,如果没有安装,可以按照下面的方式进行pip3的安装:
pip安装``1.pip安装脚本下载:https://mirrors.aliyun.com/pypi/get-pip.py``2.执行:python3 get-pip.py``3.验证:pip --version``4.修改pip源到国内` `1>管理员启动cmd` `2>换源:pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple` `3>更新源:python -m pip install --upgrade pip` `可选的国内pip源:``清华:https://pypi.tuna.tsinghua.edu.cn/simple``阿里云:http://mirrors.aliyun.com/pypi/simple/``豆瓣:http://pypi.douban.com/simple/
1.前往官网: https://pytorch.org/get-started/locally/
2. 执行下载安装命令
按照上面的条件设置好后,复制最下方的命令:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
调出cmd,执行上面的命令,也可以指定清华源,加速下载和安装:
pip3 install pip -U``pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple``pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
如果在安装过程中遇到问题,可以尝试先删除已安装的相关库,再重新安装,如pip3 uninstall torch torchvision torchaudio
。另外,不同的国内源在不同地区和网络环境下的速度可能会有所不同,可以根据实际情况进行选择。
安装onnxruntime,onnxruntime-gpu
版本判断
如何判断onnxruntime需要的版本:https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html
已知:CUDA是12.x,cuDNN是9.x,因此我们需要安装1.20.x的Onnxruntime,具体是什么版本呢?我们可以随便输入错误的版本,然后它会自动的输入正确的版本集合:
也就是正确的版本集合:1.17.0, 1.17.1, 1.17.3, 1.18.0, 1.18.1, 1.19.0, 1.19.2, 1.20.0, 1.20.1。所以我们选择1.20.0即可
执行命令
python.exe -m pip install Onnxruntime1.20.0 Onnxruntime-gpu1.20.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
执行完成后,我们在ComfyUI_windows_portable\python_embeded\Lib\site-packages目录下看到对应的库文件:
安装xformers
xformers可以大大节省AI图片生成时间,节省GPU缓存!
python.exe -m pip install -U xformers --index-url https://download.pytorch.org/whl/cu124
运行ComfyUI
双击:run_nvidia_gpu.bat 运行ComfyUI
通过启动命令显示的信息,可以知道pytorch和xformers已经起作用了,启动之后,会自动打开浏览器:
如果你看到这个界面,说明已经启动成功了。
五、ComfyUI秋叶整合包安装
===
同样的,我们解压安装包之后,还是要先安装pytorch,onnxruntime,xformers对ComfyUI进行加速。操作和官方整合包安装一样,这里就不操作了。
安装依赖
首次启动,需要安装.NET Desktop Runtime
下载之后,双击安装即可:
重新启动,弹出如下窗口,点击“是”即可:
我们需要重新启动电脑,使长路径生效。
重启电脑后,我们启动秋叶:
点击:一键启动,就可以启动ComfyUI了。
启动成功后,自动打开浏览器:
为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。
由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取
一、ComfyUI配置指南
- 报错指南
- 环境配置
- 脚本更新
- 后记
- …
二、ComfyUI基础入门
- 软件安装篇
- 插件安装篇
- …
三、 ComfyUI工作流节点/底层逻辑详解
- ComfyUI 基础概念理解
- Stable diffusion 工作原理
- 工作流底层逻辑
- 必备插件补全
- …
四、ComfyUI节点技巧进阶/多模型串联
- 节点进阶详解
- 提词技巧精通
- 多模型节点串联
- …
五、ComfyUI遮罩修改重绘/Inpenting模块详解
- 图像分辨率
- 姿势
- …
六、ComfyUI超实用SDXL工作流手把手搭建
- Refined模型
- SDXL风格化提示词
- SDXL工作流搭建
- …
由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取