Comfyui自学笔记之-ControlNet之线稿篇

前言

我们简单介绍了一些ControlNet的知识。之前的介绍是基于WEBUI的使用,不过在Comfyui中使用方法也基本一样。今天开始我们基于Comfyui的使用将每一个ControlNet都来介绍下,今天先介绍关于线稿类的。

一:Canny硬边缘

上图是一个最基本的ControlNet工作流,整个ControlNet接在了正面提示词与采样器之间。

先用预处理器将图片处理成线稿后,再和ControlNet模型一起传给节点并进入采样器进行采样画图。

强度参数:用来控制ControlNet强度的,默认为1。一般会调小一些。强度越小,ControlNet控制力度越弱,生成的图片发挥越大。强度越大,ControlNet控制力度越强,生成的图片就越会遵从预处理的结果。

所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~

在这里插入图片描述

低阈值:针对一些细节的部分,它的阈值的控制。 高阈值:针对整体进行一个阈值的控制。 数值为0-255。

阈值越高检测的细节会越少,或检测不到。阈值越低越容易检测到物体,同时检测的细节会越多。

二:SoftEdge软边缘

SoftEdge预处理的图片有一些灰色的线条。在Comfyui中白色的控制能力是最强的,灰色相对来说弱一些,黑色则是不受控制的。所以软边缘的控制能力就没有Canny那么严格了,AI的发挥空间也会更大一些了。

目前有3种预处理器分别是:HED模糊线、pidinet模糊线预处理器、TEED线条预处理器。

可以看到Pidinet的控制力比HED要稍弱一些。当我们想要AI的自主发挥空间比较大时,就可以选择Pidinet预处理器。并且Pidinet处理器所需要的时间和电脑资源也会比HED相对低一些。

TEED线条预处理器处理的线条以及阴影部分是比较精致的,背景也可以勾勒出来。并且很好的提供了一个精致的灰度图。

增稳这个参数,就是调整预处理后图像的线条稳定性。

三:Scribble涂鸦

预处理器有:Scribble涂鸦预处理器、ScribbleXDoG涂鸦预处理器、FakeScribble伪涂鸦预处理器、ScribblePiDiNet涂鸦预处理器。这几个预处理器控制强度越来越宽松。

Scribble涂鸦预处理器、ScribbleXDoG涂鸦预处理器是官方自带的预处理器模型,不需要额外下载。这两个是对边缘进行强化的一个检测,细节也比较高一些。

FakeScribble伪涂鸦预处理器所使用的模型就是前面SoftEdge里面HED软边缘预处理器的模型。所以也可以把它看成是HED涂鸦预处理器。

ScribblePiDiNet涂鸦预处理器也是调用的SoftEdge里面的pidinet软边缘预处理器的模型。

四:Lineart艺术线

预处理器有:LineArtStandard艺术线预处理器、LineArt艺术线预处理器、AnimeLineArt动漫艺术线预处理器、MangaAnime漫画艺术线预处理器。

LineArtStandard艺术线预处理器是官方自带的模型,不需要额外下载。是一个标准的艺术线预处理器。

LineArt艺术线预处理器,是一个适用于真实感图片的预处理器。

AnimeLineArt动漫艺术线预处理器与MangaAnime漫画艺术线预处理器都是用来处理动漫图片的。它们的区别是MangaAnime一般用于指代那些具有特定日本漫画风格的(这种风格特点就是它面部表情比较明显、色彩比较鲜艳)。AnimeLineArt就是一个比较包罗万象的二次元图像。MangaAnime处理的结果更精细、控制力度更强。AnimeLineArt相对来说就稍弱一些了。

五:MLSD直线检测

一款专门用来检测直线的预处理器。一般用于室内设计,建筑类。

刻痕阈值:检测我们图片中,它认为是直线分割的区域。每次改变数值加减0.1或者0.001变化,不要一下变的太多了。

距离阈值:检测出最短的直线是多长。数值可以变化大一些,可以+5左右去变。

六:分辨率与完美像素

分辨率代表着我们预处理出来的这个图像它的分辨率。分辨率的值代表着预处理出来的图像最短边的一个像素,另外一个边会等比缩放。

一张图像它的分辨如果太小,那么细节就非常少了。图像分辨率越大的话,表现的细节就非常的多了。

预处理出来的图像和原来上传的图像它的分辨率是相同的,这就叫完美像素。当我们需要一个更精细的图像,我们可以通过完美像素去执行。

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

一、ComfyUI配置指南
  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门
  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解
  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联
  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解
  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建
  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

img

### 解决ComfyUI ControlNet节点中缺失`apply controlnet (advanced)`选项的方法 #### 安装最新版ComfyUI 由于ComfyUI版本更新迅速,确保使用的是最新稳定版本可以减少兼容性和功能缺失问题的发生。如果当前使用的ComfyUI版本较旧,则可能不包含最新的特性或修复[^1]。 ```bash git clone https://github.com/comfyanonymous/ComfyUI.git cd ComfyUI pip install -r requirements.txt ``` #### 更新现有安装 对于已经安装了ComfyUI的情况,可以通过拉取最新的更改来获取新特性和改进: ```bash cd path_to_comfyui_directory git pull origin main pip install --upgrade --no-deps . ``` #### 验证Python环境配置 确认所使用的Python版本与ComfyUI的要求相匹配非常重要。通常建议遵循官方文档中的推荐设置以避免潜在的问题。此外,某些特定的功能模块可能会对Python版本有额外的需求。 #### 添加ControlNet插件支持 为了使ControlNet节点能够正常工作并显示高级选项,需确保已正确加载相应的插件文件。这一般涉及到下载指定的扩展包并将它们放置于适当的位置以便程序识别。 - 访问[ComfyUI GitHub页面](https://github.com/comfyanonymous/ComfyUI),查找有关集成ControlNet的具体说明。 - 下载必要的附加组件,并按照指示完成安装过程[^4]。 #### 调试和验证 一旦完成了上述步骤之后,重启应用程序并尝试访问ControlNet节点下的`apply controlnet (advanced)`选项。此时应该可以看到该功能项已被成功加入菜单列表之中。如果有任何异常情况发生,比如仍然看不到预期的选择框,请检查日志输出寻找错误提示信息,并据此进一步排查原因。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值