AI Agent(智能体)正在成为提升效率、自动化复杂任务的核心驱动力。它不再仅仅是一个简单的模型,而是一个能够感知环境、做出决策并采取行动的完整系统。那么,如何从零开始构建一个高效、可靠的AI Agent呢?

根据专业的构建框架,整个过程可以被划分为八个关键步骤:
1. 明确需求范围
任何成功的项目都始于清晰的定义。在构建AI Agent之初,您需要明确以下要素:
- 用例(Use Case): 您的Agent将解决什么具体问题?(例如:自动撰写报告、管理日程、代码审查等)
- 用户需求(User Needs): 目标用户是谁?他们期望从Agent那里获得什么功能和体验?
- 成功标准(Success Criteria): 如何衡量Agent的性能?(例如:任务完成率、响应时间、准确性)
- 约束条件(Constraints): 预算、时间、技术限制或安全要求等。
2. 设计系统提示词
“系统提示词”是赋予Agent“个性”和“智慧”的指令集,它指导Agent的行为。
- 目标(Goals): 设定Agent需要达成的最终目标。
- 角色/人设(Role/Persona): 赋予Agent特定的身份(例如:专业分析师、耐心导师)。
- 指令(Instructions): 明确的、详细的任务执行步骤和规则。
- 安全护栏(Guardrails): 定义Agent不应该做的事情,确保其输出安全、合规。
3. 选择基础模型
Agent的核心是大型语言模型(LLM)。选择合适的模型至关重要。
- 基础模型(Base model): 如GPT-5、Claude 3等。
- 参数/温度(Parameters (temp, top-p)): 调整模型的创造性和随机性。
- 上下文窗口(Context Window): 模型能同时处理的信息量,影响Agent的记忆能力。
- 成本/延迟(Cost/latency): 考虑API调用的费用和响应速度。
4. 工具与集成
LLM本身是“大脑”,但Agent需要“肢体”才能执行实际任务。
- 简单工具(Simple tool): 内部函数调用,例如数学计算。
- API/数据(API (web, apps, data)): 允许Agent获取实时信息或与外部服务交互。
- 模型管理器(MOP Server): 用于管理和路由模型请求。
- SQL/数据库(SQL/DB): 允许Agent查询和操作结构化数据。
- Agent工具(Agent tool): Agent可以调用另一个Agent。
- 自定义函数(Custom functions): 专为特定任务编写的代码。
5. 记忆系统
记忆是Agent学习和保持上下文的关键。
- 短期记忆 (Episodic (conversation) memory): 保持当前对话的上下文。
- 工作记忆 (Working memory): 存储Agent在执行任务过程中产生的临时信息。
- 向量数据库 (Vector Database): 存储和检索非结构化数据(如文档、知识库),实现长期记忆。
- SQL/DB: 存储结构化数据,用于知识或状态管理。
- 文件存储 (File Storage): 存储大型文件或中间结果。
6. 编排
编排是Agent的“流程控制中心”,决定了何时、如何使用其组件。
- 路由(Routes): 根据用户输入决定Agent应遵循的路径或流程。
- 触发器(Triggers): 决定Agent何时开始、暂停或切换任务。
- 参数(Parameters): 传递给工具或模型的具体输入。
- 消息(Message): 内部和外部的通信格式和流。
- Agent间通信(Agent2Agent): 协调多个Agent共同完成任务。
- 错误处理(Error handling): 确保系统在遇到问题时能够优雅地恢复。
7. 用户界面
用户与Agent的交互界面。
- 聊天界面(Chat Interface): 最常见的交互方式,如聊天机器人。
- 网页应用(Web app): 嵌入到网页或仪表板中。
- API端点(API endpoint): 供其他应用程序调用的接口。
- Slack/Discord Bot: 集成到常用的协作工具中。
8. 测试与评估
持续的测试是保证Agent质量和性能的必要条件。
- 单元测试(Unit tests): 针对Agent的各个小模块进行测试。
- 延迟测试(Latency testing): 确保Agent的响应速度满足要求。
- 质量改进(Quality): 通过人工或自动化方式评估输出的准确性和相关性。
- 迭代与改进(Iterate & Improve): 基于测试结果进行持续的版本更新和性能优化。
主流产品
目前市场上的AI Agent构建平台可以分为四大类:
| 产品类别 | 产品/平台 | LLM | 部署方式 | 关键特点 | 最佳适用场景 |
|---|---|---|---|---|---|
| 消费级AI Agents | ChatGPT(OpenAI) | GPT-5 | Cloud | 自定义GPTs、语音、视觉、记忆等 | 通用目的、创意工作、辅助任务 |
| Claude (Anthropic) | Claude 4.5 | Cloud | 项目、分析、200K上下文 | 研究、写作、编码 | |
| Perplexity | Multiple | Cloud | 搜索优先、事实核查 | 研究助理、事实核查、专业知识问答 | |
| Agentive 编码工具 | Cursor | Claude, GPT | Local + Cloud | 全功能IDE、多文件编辑、代码意识 | 专业开发、复杂项目、代码库 |
| Windsourf (Codeium) | Cascade | Local + Cloud | 流程、代理编码、代码库意识 | 团队开发、大型代码库 | |
| No-Code 构建器 | Relayapp | GPT-5 | Cloud | 人机循环(Human-in-loop)、Gmail/Slack协作 | 团队工作流、审批需求 |
| n8n | Multiple | Both | 400+集成、自助托管、开源 | 技术团队、数据隐私需求、复杂集成 | |
| 开发框架 | LangGraph | Any | Local/Cloud | 基于图的流程、状态管理、Cycles | 复杂工作流、生产应用 |
| CrewAI | Any | Local/Cloud | 基于角色、40+集成、任务委派 | 多Agent系统、自治系统 | |
| LlamaIndex | Any | Local/Cloud | RAG-first、数据连接器、查询引擎 | 知识-信息代理、文档问答 |
通过遵循上述步骤并结合合适的工具和平台,你可以有效地构建、测试并部署一个满足特定需求的AI Agent。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容

-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。

vx扫描下方二维码即可

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:

04 视频和书籍PDF合集

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)

05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!

06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)

07 deepseek部署包+技巧大全

由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发


被折叠的 条评论
为什么被折叠?



