基于机器学习的心理健康预测

1.背景介绍

        近年来,随着人工智能和机器学习技术的飞速发展,这些技术在心理健康领域的应用也逐渐受到广泛关注。心理健康是一个复杂的领域,涉及情绪、行为、认知等多方面因素,机器学习技术凭借其强大的数据分析和识别分类能力,为心理健康预测带来了新的机遇和突破。

2.数据介绍

        数据集是自己收集制作的,该过程不在详细叙述。共制作了480个样本信息,包括15个特征,如性别、民族、出生地、适应性、人际关系、学习压力、恋爱压力、网络成瘾、进食问题、睡眠问题等。

3.机器学习模型和具体操作步骤

        常用的机器学习算法包括:分类算法和回归算法。本实验利用随机森林、支持向量机、KNN分类模型进行预测心理健康状况。

       本实验整体操作流程:1.制作数据集(已完成),是实验的前提条件。2.编程与算法部分。

       ①导入数据
       ②概述数据及统计
       ③构建模型:模型训练和预测
       ④评估算法
       ⑤特征重要性

3.1随机森林分类

        首先,需要导入项目所需的类库和数据集,类库包括numpy、pandas、sklearn、matplotlib库,数据集为心理健康预测数据集,在这里将采用Pandas来导入数据。在接下来的部分将采用Pandas来对数据进行描述性统计分析。

        概述数据

         接下来对数据我们做一些理解,以便于选择合适的算法,我们会通过以下几个角度审查数据,并附上概述结果:
I.数据的维度

(480,16)

II.概述数据及统计

print(train.iloc[:,:].describe())#数值类型的包括均值,标准差,最大值,最小值,分位数等。

       构建模型、训练和预测

        定义随机森林模型、利用训练数据集进行模型训练,随后进行验证集测试。 

# 使用随机森林对数据进行分类
rfc1 = RandomForestClassifier(n_estimators=100,  # 树的数量
                              max_depth=8,  # 子树最大深度)
rfc1.fit(X_train, y_train)
# 输出其在训练数据和验证数据集上的预测精度
rfc1_lab = rfc1.predict(X_train)
rfc1_pre = rfc1.predict(X_val)

       评估算法及ROC曲线图

print("随机森林的OOB score:", rfc1.oob_score_)
print("训练数据集上的精度:", accuracy_score(y_train, rfc1_lab))
print("验证数据集上的精度:", accuracy_score(y_val, rfc1_pre))

04f4724d0d6215c15037d14b031f8257.jpeg

       特征重要性

     shap是可视化机器学习模型的一种方法,在使用shap之前,需要训练好特定的模型,然后导入shap库。接着,将模型输入shap解释器中,创建一个explainer对象,利用它计算每个观察对象的SHAP值,每个特征将对应一个SHAP值。

e4913f66cbf6844592553c1340608aa3.jpegd4a528bad174ae4fa869df8e4526dfd2.jpeg

        接下来,就是构建支持向量机分类模型和KNN分类模型,因其流程都一样,再次不再详细叙述。展示其分类结果。

3.2  SVM分类模型和KNN分类模型

68e5f7196ff3c518eb8a063eb1aa12e9.jpega42084e66504a64909a1c54f83621749.jpeg

以上实验就介绍完了。获得实验数据和完整代码,请私我。

### 回答1: 抱歉,作为一名语言模型,我无法绘制图像。但我可以为你描述一个简单的网络拓扑图,它可能类似于这样: 在中心,有一个圆形的节点,代表服务器或路由器。从该节点向外伸出几条线,每条线代表一个网络连接。每个连接的末端可能是另一个圆形节点,也可能是一个小圆点,代表计算机或其他设备。 在实际的网络拓扑图中,可能还会有更多的节点、连接和子网。但是这个简单的示例应该足以帮助你理解网络拓扑的基本概念。 ### 回答2: 网络拓扑图是一种用图形表示网络结构的工具。它展示了网络中各个节点和它们之间的连接关系。一个简单的网络拓扑图可以如下所示: 在这张图中,我们有四个节点,分别用A、B、C、D表示。这四个节点可以代表计算机、服务器或其他网络设备。这些节点之间的连接关系是通过连线表示的,箭头表示了连接的方向。 在这个例子中,A节点连接到B和C节点,B节点连接到C和D节点,C节点连接到D节点。这种连接方式可以是有线连接,比如以太网线,或者是无线连接,比如Wi-Fi。 这个简单的网络拓扑图展示了一个典型的星型拓扑结构,其中A节点是中心节点,其他节点都与它相连。这种拓扑结构通常用于小型网络,例如家庭网络或办公室网络。 通过网络拓扑图,我们可以清楚地看到网络中各个节点之间的连接关系,帮助我们理解和管理网络。此外,它还能够帮助我们确定网络中的瓶颈和故障点,以便更好地优化网络性能或解决问题。 总之,网络拓扑图是一种简单而重要的工具,可以帮助我们理解和管理网络。它可以根据实际情况进行扩展和调整,以适应更复杂的网络结构。 ### 回答3: 网络拓扑图是用于描述计算机网络中各个设备之间连接关系的图形化表示。以下是一个简单的网络拓扑图的描述: 这个网络拓扑图描述了一个小型办公室网络,其中有5台设备,包括1台路由器、2台台式电脑、1台打印机和1台无线接入点。所有设备都通过以太网连接。 在图的左侧,有一台标有“路由器”的设备,它有多个以太网接口,用于与其他设备连接。从路由器分别连接到两台台式电脑和无线接入点。无线接入点放置在办公室中心,它通过无线信号与其他无线设备通信。 两台台式电脑位于网络中间部分,它们分别通过以太网电缆与路由器相连。这些电脑可以通过路由器互相通信,并与其他设备进行数据交换。 在图的右侧,有一台打印机,它通过以太网连接到路由器。这将使所有网络中的设备都能够与打印机进行通信和共享打印资源。 整个网络拓扑图简单明了,清晰地展示了设备之间的连接关系。它可以帮助人们更好地理解网络结构,诊断和解决网络问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值