网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
- 1*1卷积核,在获得相同感受野(reception feild)、保持feature map尺度不变的情况下,使用1*1卷积核的网络更深,而每一层网络后都会用Relu函数增加非线性,这样就增加了一层非线性特性。
2.3 Inception V1
在3*3卷积和5*5卷积之前,使用1*1卷积主要是为了减少参数量,从而减少计算。至于为什么减少了,上一小节已经描述了,在此不再赘述了。
2.4 GoogLeNet结构
-
1.网络的最后采用全局平均池化代替全连接层,该想法来自NIN。但是,实际在最后还是加了一个全连接层,主要是为了方便对输出进行灵活调整。网络中虽然用全局平均池化替代了全连接层,但是网络模型还是用到了dropout,来减少过拟合现象。
-
2.为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度(辅助分类器)。辅助分类器是将中间某一层的输出用作分类,并按一个较小的权重(0.3)加到最终分类结果中,这样相当于做了模型融合,同时给网络增加了反向传播的梯度信号,也提供了额外的正则化,对于整个网络的训练很有裨益。而在推理过程时,这两个额外的softmax会被去掉。(摘自https://my.oschina.net/u/