群的同态映射:
设(G,·)是一个群,(K,*)是一个代数系统,(G,·)到(K,*)内的一个映射σ称作是同态映射,如果对任意a、b属于G都有 σ(a·b)=σ(a)*σ(b).
如果σ是单射,则可称之为单同态映射:
如果σ是满射,则可称之为满同态映射:
如果σ是双射,则可称之为同构映射。
G到G的同态映射称为自同态映射;
G到G的同构映射称为自同构映射
但是注意,σ可能既未必是单射,也未必是满射
同态的证明方法:
σ(a·b)=σ(a)*σ(b).
(如果要证明是同构,就要求同态基础上加上双射)
练习题:
设(Z,+)为整数加法群,(C*,*)是所有非零复数在数的乘法下作成的群,令σ:Z->C*,σ(n)=^n,其中i是C的虚数单位。则σ是Z到C*内的一个映射,
任意a,b属于Z,σ(a+b)=i^(a+b)=σ(a) *σ(b)
这个σ既不是满射也不是单射
例:设G=(Z,+),G'(R,+),令σ:G->G’,σ(x)=-x
σ(a)+σ(b)=-(a+b)=σ(a+b),σ是单射,不是满射
例:对于群G1(R,+)和G2(R,·),令G1->G2,σ(x)=e^x
σ(x1+x2)=σ(x1)*σ(x1)
注意到:σ(G1)=G2,是G2的一个子群。
设Z是整数加法群,乙是模n的整数加法群。
σ:Z->n, σ(x)=x(mod n)
因为 σ(x1+x2)=(x1+x2)(mod n)=( (x1 mod n)+(x2 mod n) )(mod n)=σ(x1 mod n)+n(x2 mod n)
=σ(x1)+n σ(x2),所以σ是Z到Z,的满同态映射, Z~σ(Zn.)=Zn 是Zn的一个子群
例:设Z.是模6整数加法群,Z是模3整数加法群。令σ:Z->Z3, σ(x)=x(mod 3)
,这里的映射是满同态映射
思考:
两个代数系统G、G’,且G~G’(同态)
(1)若G上的运算具有结合律,则G上的运算也具有结合律? 有
若G1上的运算具有交换律、等幂律、…,则G‘’上的运算也具有相应的运算律吗? 有
(2)若G‘上的运算具有结合律、交换律、等幂律、…,则G上的运算也具有相应的运算律?
不一定 ,同态映射的运算律只有单向保持性
练习题
设σ是群(G,·)到代数系统(K,*)内的一个同态映射,G'=σ(G),则
(1)(G',*)是一个群
(2)(G',*)的单位元1'就是(G,·)的单位元1的映像σ(1) ,而且这个单位元就是k的单位元
(3)对任意a∈G,σ(a)^-1=σ(a^-1)
从此定理可知,如果G中两个元素在G‘中的映像相同,则它们逆元在G'中的映像仍相同。
设(G,*)、(K,+)是两个群,令其中σ:G->K,σ(x)=e^x,则e^0是K的单位元.
σ(G)是K的一个子群
例:G:=(a)是循环群,σ是G,到G’的满同态,证明:G’也是循环群。
证明:任取x∈G,,则由于σ是满射,存在a^t属于G使σ(a^t)=x。由同态的定义知
x= σ(a^t) = σ(aa...a)= σ(a)σ(a)...σ(a)= σ(a)^t ,σ(a)是G’的生成元素,证毕。
经典例题:
例:(R*,*)与(R,+)不可能同构。
证明:用反证法。假设(R*,*)与(R,+)同构,
可设映射c为R“到R上的一个同构映射,于是必有:σ:1->0,-1->a, a≠0
从而,σ(1)=σ((-1)·(-1))=σ(-1)+σ(-1)=a+a=2a。则有2a=0,a=0与a≠0矛盾
例:无限循环群同构于整数加法群。
证明:设G=(g)是无限乘法循环群,Z为整数加法群:则
对任意a∈G,存在n∈Z,使得a=g^n,令f:a→n。不难验证f是G到Z上的1-1映射;
任取a、b属于G,则存在i,j∈Z,使得a=g^i,b=g^j
f(g^i * g^j)= f(g ^i+j )=i+j=f(g^i)+f(g^j),因此,是是G到Z上的同构映射,即G=Z。
同构映射:
同态+双射
自同构映射:
设G是一个群,若是G到G上的同构映射,则称σ为自同构映射。
恒等映射,
称为恒等自同构映射。
练习题
设(Z,+)是整数加法群,令σ:n->-n,任意n数以Z则σ是Z的一个自同构映射。
设G是一个Abel群,将G的每个元素都映到其逆元素的映射σ:a→>a^-1(任意aEG)是G的一个自同构映射。
(R*,X)是非零实数乘法群,判断以下哪些是同构映射? A
A,σ:(R*,*)→(R*,*),σ(x)=-x,任意x属于R*
B,(R*,*)→(R*,*),σ(x)=2x,任意x属于R*
C,(R*, *)→(R*,*),σ(x)=x^2,任意x属于R*
D,(R*, *)→(R*, *),σ (x)=2^x,任意x属于R*
E,(R*,+)→(R*, *),σ (x)=2^x,任意x属于R*
同态核:
设σ是G到G’上的一个同态映射,叫N为G中所有变成G'中1'的元素g的集合,记为σ^-1(1'),即N=σ^-1(1')={g属于G| σ(g)=1 ‘ } ,则称N为σ的核。
单位元一定在同态核中
第一同态定理:
设是G到G'上的一个同态映射,于是,σ的核N是G的一个正规子群,对于G'的任意元素a',σ^-1( a')={x|x∈G ,σ(x)=a’} 是N在G中的一个陪集,因此,G’的元素和N在G中的陪集一一对应。
正规子群:
定义:设 G 是一个群,H 是G的子群。如果对于任意的g€G,都有gH=Hg,则称 H是G的正规子群,记作H◁G。这里gH={gh|h属于H}是H的一个右陪集,Hg={hg|heH}是H的一个左陪集。也就是说,对于群G的正规子群 H,其任意一个左陪集都等于相应的右陪集。
两个特殊
(1)“平凡”子群H={1}和G都是G的正规子群:
(2)Abel群的任意子群是正规子群;
两个理解
陪集相等:直观上,正规子群的左陪集和右陪集重合,反映了子群 在群 G 中的某种“对称性”。这种对称性使得在对群 G 进行基于 的陪集分解时,左陪集和右陪集的划分方式一致。
共轭不变性:正规子群还有一个等价定义。若对于任意g€G和h€H,都有ghg^-1€H,则H是G的正规子群。这里 ghg^-1称为 h关于g的共轭元。这意味着正规子群H对共轭运算封闭,即 H 包含了其任意元素的所有共轭元。
两个性质:
商群存在性:正规子群之所以重要,一个关键原因是它使得商群的定义成为可能。若 H 是 G 的正规子群那么可以在 G 关于 H 的陪集集合{gH|g€ G} 上定义一种自然的群运算,从而构成一个新的群,称为 G关于H 的商群,记作 G/H。商群在研究群的结构和性质时具有重要作用,它可以将较大的群 G 分解为较小的、更易于研究的群 G/H 和 H.
同态基本定理相关:正规子群与群同态密切相关。设:G→G’是一个群同态,那么同态的核ker(σ)= {g ∈ G|σ(g) =e'}(其中e' 是 G’的单位元)是 G 的一个正规子群。而且,群同态基本定理表明,任何群同态 σ:G ->G' 都可以分解为 G → G/ker(σ)→ Im(σ)→G’,其中 G/ker(σ)与Im(σ)同构。这深刻揭示了正规子群在群的同态结构中的核心地位。
这里的ker是同态核的意思,Im是σ在G’中的像
特性:
设N是群G的正规子群。若A、B是N的陪集则AB也是N的陪集。(可以根据这个来拓展以求一个完整的陪集)
练习:
证明:设N是群G的正规子群。若A、B是N的陪集,则AB也是N的陪集。
A=a*N,B=b*N ->AB=(a*N)(b*N)=a(N*b)*N=a*b*N
全部陪集可以构成一个群
第二同态定理:
设N是群G的正规子群,于是按照陪集的乘法,N的所有陪集作成一个群G’
定义G到G’内的映射 σ :a→aN,则σ是G到G’上的一个同态映射,且的核就是N
称G/N为G对于N的商群,记为G/N。
若G是有限群,则商群中元素个数等于N在G中的陪集的个数。
同态基本定理、第一同构定理:
设是G到G'上的一个同态映射,若σ的核为N,则G'等价G/N。
总结:
(1)若σ为双射(称为同构映射),表明G与G'在代数结构上完全相同,σ的同态核即G的单位元,
(2)若o为单射(称为单同态映射),表明G与G的某个子群同构,σ的同态核即G的单位元。
(3)若σ为满射(称为满同态映射),表明G的某个商群与G'同构。可以形象地说,G'是G的一个更高抽象或缩影。
(4))若σ为非单非满的同态映射,表明G的一个商群与G'的一个子群同构。或者说G’的一个子群是G的一个更高抽象或缩影。
同态映射时,两个子群之间的关系:
结论1.
若H为G之子群,则σ(H)亦是G’ 的 子群
结论2
.若H'为G'之子群,则σ ^-1(H’)亦必为G之子群。且一定包含N(同态核)(单位元所在的陪集)
总计:G与N之间的子群和G'的子群-一对应:大群对应大群,小群对应小群
练习.(important)
(Z12, +12)到(Z4,+4)的映射f定义如下:f(x)=x mod 4的余数,对任意x属于Z12
1,f是不是同态映射?
是:
2,同态核是? N={0,4,8}
3,写出商集:Z12/N ={{0,4,8},{11,5,9},{2,6,10},{3,7,11}};
4,将Z12到Z12/N的自然映射记作g ,g(3)为?g^-1(g(3))为? {3,7,11}; g^-1({3,7,11})={3,7,11}
5,给出Z4到Z12/N的同构映射?等价就可以画图为:
(
补充:拉格朗日定理:
原理:拉格朗日定理指出,若G是有限群,是G的子群,那么(子群H的阶,即元素个数)整除G.(群G的阶)。例如,若|G|=12,子群H的阶只能是1、2、3、4、6、12,因为这些数是12的因数。
局限性:虽然知道子群阶数的可能值,但不能确定每个可能阶数的子群是否存在以及存在的个数。例如,12阶群可能有多个2阶子群、3阶子群等,也可能不存在某些阶数的子群。
特殊群的性质
循环群 :
原理:对于循环群G =(a),若|G|=n,对于n的每个正因数d,存在唯一的一个d阶子群(a)。例如012阶循环群,因为12的正因数有1,2,3,4,6,12,所以它有6个子群,分别是1阶子群(e)(e为单位元)2阶子群(a^6),3阶子群(a^4〉,4阶子群(a^3),6阶子群(a^2)和12阶子群(a)本身。
交换群:
原理:有限交换群可以分解为循环群的直和。利用这种分解以及循环群子群的性质,可以确定交换群子群的个数。例如,对于p^n阶(p为素数)的交换群,通过分析其作为循环群直和的结构,可得到子群个数。
以p^2阶交换群为例,它同构于Zp^2,Zp*Zp。Zp^2是循环群,子群个数为2+1=3个(分别是1阶、p阶、p^2阶);Zp*Zp的子群个数计算相对复杂,除了1阶和p^2阶子群,p阶子群个数为p +1个(通过线性代数中向量空间的子空间概念类比理解,2,么,可看作么,上的二维向量空间,p阶子群对应一维子空间),所以总共有p+3个子群。
对称群:
原理:对称群S,(n个元素的所有置换构成的群)子群的确定较为复杂,常利用共轭类、正规子群等概念。例如,S3;的阶为6,其可能的子群阶数为1、2、3、6。
1阶子群为{(1)}((1)表示恒等置换),
2阶子群有3个,分别由(12)、(13)、(23)生成,
3阶子群为A;={(1),(123),(132)}(3次交错群),
6阶子群就是S;本身,所以S;共有1+3+1+1=6个子群。
)
6.给出Z12的所有包括N的子群
7,列出Z4的所有子群 {0} {0,2} {0,1,2,3,}
8,列出(6)和(7)的子群的对应的关系
N可以理解为当前映射下的单位元,这样就更好理解上面的题了
质数阶的群一定是循环群,质数2方阶的群一定是交换群,更大就不一定了
例:H为G的子群时 ,σ^-1(σ(H))=HN
比如:G={0,1,2,3,4,5} H={0,3} ,f是奇偶的映射, N是(0,2,4) ,H!=NH
因为可能是不同划分下的一个子群和同态核的乘积
而且还有:
1,NH=HN
2,H属于NH
3,N属于HN
4,如果N属于H,那么NH=N
这里的映射满足满射
结论3
σ^-1(σ(H))=HN,而H属于HN,N属于HN
结论4.
若N属于子群H,则HN=H,即σ^-1(σ(H))=H。
结论5.
σ(σ'(H’))=H'
结论6.
若H是G正规子群,则H'=σ(H)是G'正规子群。
结论7.
若H'是G'的正规子群,则H=σ^-1(H’)是G的正规子群。
结论8.
若H是G的包含同态核N的正规子群,则H'=σ(H)是G'正规子群。
结论9.
若H'是G'的正规子群,则H=σ^-1(H')是G的包含同态核N的正规子群。
总结G与N之间的正规子群和G'的正规子群-一对应
思考;
若σ为群G到G'内的同态映射,结论1~结论7是否仍然成立?(结论6不再成立)
总结:设σ为群G到G'的满同态映射,则G的包含同态核N的子群和G'的子群一一对应:大群对应大群,小群对应小群,正规子群对应正规子群。
练习题:
例:任意有限群都同构于Sn的一个子群。
群G与其真子群之间是否能够建立同构映射? 能
例如。对于群G=(R,+)和G1(R+,·),
令0:G->G1,f(x)=e^x则
f是同态映射,而且是双射。