数据结构与算法-数学-基础数学2(扩展欧几里得算法,组合数问题)

六:扩展欧几里得算法

同余:

若 a≡b(modm),则 m 整除 a−b,即 a=b+km(k 为整数)。

扩展欧几里得算法

扩展欧几里得算法可用于求解 ax+by=gcd(a,b) 的一组整数解。

#include <iostream>

using namespace std;

// 扩展欧几里得算法,用于求解 ax + by = gcd(a, b) 的一组整数解

int exgcd(int a, int b, int &x, int &y) {

    if (!b) {

        x = 1, y = 0;

        return a;

    }

    int d = exgcd(b, a % b, y, x);

    y -= a / b * x;

return d;

}

// 判断方程 ax + by = c 是否有解,并尝试求解

bool solveLinearEquation(int a, int b, int c, int &x, int &y) {

    int d = exgcd(a, b, x, y);

    if (c % d != 0) {

        // 如果 c 不是 gcd(a, b) 的倍数,则方程无解

        return false;

    }

    int k = c / d;

    // 得到方程 ax + by = c 的一组特解

    x *= k;

    y *= k;

return true;

}

int main() {

    int a, b, c;

    cin >> a >> b >> c;

    int x, y;

    if (solveLinearEquation(a, b, c, x, y)) {

        cout << "方程有解,一组解为: x = " << x << ", y = " << y << endl;

    } else {

        cout << "方程无解" << endl;

    }

return 0;

}

七:组合数

1-:访问次数多,数值较小,使用动态规划法:


当访问次数较多且数据范围较小时,可利用组合数的递推公式 

Cnm(n个中m个的组合)=Cn−1m(第n个不选,剩下的n-1个中选m个)+Cn−1m−1(选中n,剩m-1个在其余n-1中选)​

 进行动态规划求解。

#include <iostream>

using namespace std;

const int N = 2010, MOD = 1e9 + 7;

int c[N][N];

void init() {

    for (int i = 0; i < N; i++) {

        for (int j = 0; j <= i; j++) {

            if (!j) c[i][j] = 1;

            else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % MOD;

        }

}

}

int main() {

    init();

    int n;

    cin >> n;

    while (n--) {

        int a, b;

        cin >> a >> b;

        cout << c[a][b] << endl;

    }

return 0;

}

2-:qmi求组合数(数据范围较大但是访问次数少)

若数据范围较大但访问次数少,可通过快速幂来计算阶乘的逆元,进而计算组合数。若数据较少但访问较多,也可预处理阶乘和阶乘逆元数组。

这里有一个可以把n logn 的时间复杂度降低为 n的一个初始化方法:

#include <iostream>

using namespace std;

typedef long long LL;

const int N = 100010, MOD = 1e9 + 7;

int fact[N], infact[N];

// 快速幂函数

int qmi(int a, int k, int p) {

    int res = 1;

    while (k) {

        if (k & 1) res = (LL)res * a % p;

        a = (LL)a * a % p;

        k >>= 1;

    }

return res;

}

// 预处理阶乘和阶乘逆元数组

void init() {

//求出fact (fact[i]表示i!)

    intfact[0]=fact[0] = 1;

    for (int i = 1; i < N; i++) {

        fact[i] = (LL)fact[i - 1] * i % MOD;

}

//通过infact[i]=infact[i+1]×(i+1)mod p 对我们的球infact进行优化

    infact[N - 1] = qmi(fact[N - 1], MOD - 2, MOD);

    for (int i = N - 2; i >= 1; i--) {

        infact[i] = (LL)infact[i + 1] * (i + 1) % MOD;

}

}

int main() {

    init();

    int n;

    cin >> n;

    while (n--) {

        int a, b;

        cin >> a >> b;

        cout << (LL)fact[a] * infact[b] % MOD * infact[a - b] % MOD << endl;

    }

return 0;

}

3-:Lucas 定理求组合数(数据量更大,但是模数是质数时)

当数据量更大时,可使用 Lucas 定理来计算组合数。Lucas 定理表述为:

Cnm​≡(C(n mod p)(m mod p)×C(n/p)(m/p) )mod p,其中 p 为质数。

这里我们使用最基本的线性的方式求出一个组合数配合lucas定理来计算组合数

#include <iostream>

using namespace std;

typedef long long LL;

// 快速幂函数

int qmi(int a, int k, int p) {

    int res = 1;

    while (k) {

        if (k & 1) res = (LL)res * a % p;

        a = (LL)a * a % p;

        k >>= 1;

    }

return res;

}

// 计算 C(a, b) % p

int C(int a, int b, int p) {

    if (b > a) return 0;

    int res = 1;

    for (int i = 1, j = a; i <= b; i++, j--) {

        res = (LL)res * j % p;

        res = (LL)res * qmi(i, p - 2, p) % p;

    }

return res;

}

// Lucas 定理

int lucas(LL a, LL b, int p) {

    if (a < p && b < p) return C(a, b, p);//数据a,b比p小,直接返回答案

return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;//小数据直接用C函数,大的继续调用lucas

}

int main() {

    int n;

    cin >> n;

    while (n--) {

        LL a, b;

        int p;

        cin >> a >> b >> p;

        cout << lucas(a, b, p) << endl;

    }

return 0;

}

-4:超大数据需要配合高精度乘法和加法

比如a,b都在1~10000的范围内

筛出质数:使用筛法(如埃氏筛法或线性筛法)找出 1 到 10000 内的所有质数。

分解质因数:分别对 a!、b! 和 (a−b)! 进行质因数分解(枚举质数然后获取其在这三个数的权重),统计每个质因数的指数。

计算组合数:通过 Cab​ 的质因数分解结果,使用高精度乘法计算最终的组合数。

#include <iostream>

#include <vector>

using namespace std;

const int N = 10010;

int primes[N], cnt;

bool st[N];

// 线性筛法求质数

void get_primes(int n) {

    for (int i = 2; i <= n; i++) {

        if (!st[i]) primes[cnt++] = i;

        for (int j = 0; primes[j] <= n / i; j++) {

            st[primes[j] * i] = true;

            if (i % primes[j] == 0) break;

        }

}

}

// 计算 n! 中质因数 p 的指数

int get(int n, int p) {

    int res = 0;

    while (n) {

        res += n / p;

        n /= p;

    }

return res;

}

// 高精度乘法

vector<int> mul(vector<int> a, int b) {

    vector<int> c;

    int t = 0;

    for (int i = 0; i < a.size() || t; i++) {

        if (i < a.size()) t += a[i] * b;

        c.push_back(t % 10);

        t /= 10;

    }

    while (c.size() > 1 && c.back() == 0) c.pop_back();

return c;

}

// 计算组合数 C(a, b)

vector<int> combination(int a, int b) {

    get_primes(a);

    vector<int> res(1, 1);

    for (int i = 0; i < cnt; i++) {

        int p = primes[i];

        // 计算 C(a, b) 中质因数 p 的指数

        int s = get(a, p) - get(b, p) - get(a - b, p);

        // 累乘质因数 p 的 s 次幂

        for (int j = 0; j < s; j++) {

            res = mul(res, p);

        }

    }

return res;

}

int main() {

    int a, b;

    cin >> a >> b;

    vector<int> res = combination(a, b);

    for (int i = res.size() - 1; i >= 0; i--) {

        cout << res[i];

    }

    cout << endl;

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值