2024年最全Scikit-learn:全面概述(2),万字总结

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

使用Scikit-learn进行手写数字识别

手写数字识别是一个经典的机器学习问题,可以使用Scikit-learn进行解决。下面是一个简单的案例,展示了如何使用Scikit-learn构建一个手写数字识别模型。

步骤1:数据准备
首先,我们需要准备手写数字的数据集。Scikit-learn已经内置了一个手写数字数据集,可以直接使用。我们需要将数据集分为训练集和测试集。

from sklearn import datasets

# 加载手写数字数据集
digits = datasets.load_digits()

# 将数据集分为训练集和测试集
X_train = digits.data[:1500]
y_train = digits.target[:1500]
X_test = digits.data[1500:]
y_test = digits.target[1500:]

步骤2:模型训练和预测
接下来,我们可以选择一个合适的模型进行训练和预测。这里我们选择支持向量机(Support Vector Machine)作为模型。

from sklearn import svm

# 创建SVM分类器
clf = svm.SVC()

# 使用训练集训练模型
clf.fit(X_train, y_train)

# 使用测试集进行预测
y_pred = clf.predict(X_test)

步骤3:模型评估
最后,我们可以使用一些评估指标来评估模型的性能。这里我们使用准确率作为评估指标。

from sklearn import metrics

# 计算准确率
accuracy = metrics.accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

以上就是使用Scikit-learn进行手写数字识别的简单案例。通过Scikit-learn的简单高效的API,我们可以轻松地构建和训练模型,并使用各种评估方法评估模型的性能。这个案例只是一个简单示例,实际应用中可能需要更复杂的特征工程和模型选择方法来提高模型的性能。

练习题

练习题1:使用Scikit-learn进行鸢尾花分类

鸢尾花分类是一个经典的机器学习问题,可以使用Scikit-learn进行解决。下面是一个练习题,要求使用Scikit-learn构建一个鸢尾花分类模型。

步骤1:数据准备
首先,我们需要准备鸢尾花的数据集。Scikit-learn已经内置了一个鸢尾花数据集,可以直接使用。我们需要将数据集分为训练集和测试集。

from sklearn import datasets
from sklearn.model_selection import train_test_split

# 加载鸢尾花数据集
iris = datasets.load_iris()

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)

步骤2:模型训练和预测
接下来,我们可以选择一个合适的模型进行训练和预测。这里我们选择支持向量机(Support Vector Machine)作为模型。

from sklearn import svm

# 创建SVM分类器
clf = svm.SVC()

# 使用训练集训练模型
clf.fit(X_train, y_train)

# 使用测试集进行预测
y_pred = clf.predict(X_test)

步骤3:模型评估
最后,我们可以使用一些评估指标来评估模型的性能。这里我们使用准确率作为评估指标。

from sklearn import metrics

# 计算准确率
accuracy = metrics.accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

练习题2:使用Scikit-learn进行波士顿房价预测

波士顿房价预测是一个常见的回归问题,可以使用Scikit-learn进行解决。下面是一个练习题,要求使用Scikit-learn构建一个波士顿房价预测模型。

步骤1:数据准备
首先,我们需要准备波士顿房价的数据集。Scikit-learn已经内置了一个波士顿房价数据集,可以直接使用。我们需要将数据集分为训练集和测试集。

from sklearn import datasets
from sklearn.model_selection import train_test_split

# 加载波士顿房价数据集
boston = datasets.load_boston()

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.2, random_state=42)

步骤2:模型训练和预测
接下来,我们可以选择一个合适的模型进行训练和预测。这里我们选择线性回归(Linear Regression)作为模型。

from sklearn.linear_model import LinearRegression

# 创建线性回归模型
reg = LinearRegression()

# 使用训练集训练模型
reg.fit(X_train, y_train)

# 使用测试集进行预测
y_pred = reg.predict(X_test)

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

术提升。**

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值