Hadoop 之 MapReduce 的工作原理及其倒排索引的建立_map倒排索引实现原理(1)

11 篇文章 0 订阅
10 篇文章 0 订阅

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

(2) 运行各类任务的Container:这是由ApplicationMaster向ResourceManager申请的,并由ApplicationMaster与NodeManager通信以启动之。
以上两类Container可能在任意节点上,它们的位置通常而言是随机的,即ApplicationMaster可能与它管理的任务运行在一个节点上。

整个MapReduce的过程大致分为 Map–>Shuffle(排序)–>Combine(组合)–>Reduce

下面通过一个单词计数案例来理解各个过程
1)将文件拆分成splits(片),并将每个split按行分割形成<key,value>对,如图所示。这一步由MapReduce框架自动完成,其中偏移量即key值


                    
                    分割过程

将分割好的<key,value>对交给用户定义的map方法进行处理,生成新的<key,value>对,如下图所示。


                    执行map方法

得到map方法输出的<key,value>对后,Mapper会将它们按照key值进行Shuffle(排序),并执行Combine过程,将key至相同value值累加,得到Mapper的最终输出结果。如下图所示。

                     Map端排序及Combine过程

Reducer先对从Mapper接收的数据进行排序,再交由用户自定义的reduce方法进行处理,得到新的<key,value>对,并作为WordCount的输出结果,如下图所示。


                    Reduce端排序及输出结果

下面看怎么用Java来实现WordCount单词计数的功能

首先看Map过程
Map过程需要继承org.apache.hadoop.mapreduce.Mapper包中 Mapper 类,并重写其map方法。


/**

     *    Mapper<LongWritable, Text, Text, IntWritable>中  LongWritable,IntWritable是Hadoop数据类型表示长整型和整形
     *
     *    LongWritable, Text表示输入类型 (比如本应用单词计数输入是 偏移量(字符串中的第一个单词的其实位置),对应的单词(值))
     *    Text, IntWritable表示输出类型  输出是单词  和他的个数
     *  注意:map函数中前两个参数LongWritable key, Text value和输出类型不一致
     *      所以后面要设置输出类型 要使他们一致
     */
    //Map过程
    public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
        /***
         *
         */
        @Override
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
                throws IOException, InterruptedException {
            //默认的map的value是每一行,我这里自定义的是以空格分割
            String[] vs = value.toString().split("\\s");
            for (String v : vs) {
                //写出去
                context.write(new Text(v), ONE);
            }
 
        }
    }



Reduce过程
Reduce过程需要继承org.apache.hadoop.mapreduce包中 Reducer 类,并 重写 其reduce方法。Map过程输出<key,values>中key为单个单词,而values是对应单词的计数值所组成的列表,Map的输出就是Reduce的输入,所以reduce方法只要遍历values并求和,即可得到某个单词的总次数。


//Reduce过程
    /***
     * Text, IntWritable输入类型,从map过程获得 既map的输出作为Reduce的输入
     * Text, IntWritable输出类型
     */
    public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values,
                Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
            int count=0;
            for(IntWritable v:values){
                count+=v.get();//单词个数加一
            }
            
            context.write(key, new IntWritable(count));
        }
        
    }

最后执行MapReduce任务


public static void main(String[] args) {
        
        Configuration conf=new Configuration();
        try {
            //args从控制台获取路径 解析得到域名
            String[] paths=new GenericOptionsParser(conf,args).getRemainingArgs();
            if(paths.length<2){
                throw new RuntimeException("必須輸出 輸入 和输出路径");
            }
            //得到一个Job 并设置名字
            Job job=Job.getInstance(conf,"wordcount");
            //设置Jar 使本程序在Hadoop中运行
            job.setJarByClass(WordCount.class);
            //设置Map处理类
            job.setMapperClass(WordCountMapper.class);
            //设置map的输出类型,因为不一致,所以要设置
            job.setMapOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            //设置Reduce处理类
            job.setReducerClass(WordCountReducer.class);
            //设置输入和输出目录
            FileInputFormat.addInputPath(job, new Path(paths[0]));
            FileOutputFormat.setOutputPath(job, new Path(paths[1]));
            //启动运行
            System.exit(job.waitForCompletion(true) ? 0:1);
        } catch (IOException e) {
            e.printStackTrace();
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

即可求得每个单词的个数

下面把整个过程的源码附上,有需要的朋友可以拿去测试


package hadoopday02;
 
import java.io.IOException;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
 
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
 
public class WordCount {
    //计数变量
    private static final IntWritable ONE = new IntWritable(1);
    /**
     *
     * @author 汤高
     *    Mapper<LongWritable, Text, Text, IntWritable>中  LongWritable,IntWritable是Hadoop数据类型表示长整型和整形
     *
     *    LongWritable, Text表示输入类型 (比如本应用单词计数输入是 偏移量(字符串中的第一个单词的其实位置),对应的单词(值))
     *    Text, IntWritable表示输出类型  输出是单词  和他的个数
     *  注意:map函数中前两个参数LongWritable key, Text value和输出类型不一致
     *      所以后面要设置输出类型 要使他们一致
     */
    //Map过程
    public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
        /***
         *
         */
        @Override
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
                throws IOException, InterruptedException {
            //默认的map的value是每一行,我这里自定义的是以空格分割
            String[] vs = value.toString().split("\\s");
            for (String v : vs) {
                //写出去
                context.write(new Text(v), ONE);
            }
 
        }
    }
    //Reduce过程
    /***
     * Text, IntWritable输入类型,从map过程获得 既map的输出作为Reduce的输入
     * Text, IntWritable输出类型
     */
    public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values,
                Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
            int count=0;
            for(IntWritable v:values){
                count+=v.get();//单词个数加一
            }
            
            context.write(key, new IntWritable(count));
        }
        
    }
    
    public static void main(String[] args) {
        
        Configuration conf=new Configuration();
        try {
            //args从控制台获取路径 解析得到域名
            String[] paths=new GenericOptionsParser(conf,args).getRemainingArgs();
            if(paths.length<2){
                throw new RuntimeException("必須輸出 輸入 和输出路径");
            }
            //得到一个Job 并设置名字
            Job job=Job.getInstance(conf,"wordcount");
            //设置Jar 使本程序在Hadoop中运行
            job.setJarByClass(WordCount.class);
            //设置Map处理类
            job.setMapperClass(WordCountMapper.class);
            //设置map的输出类型,因为不一致,所以要设置
            job.setMapOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            //设置Reduce处理类
            job.setReducerClass(WordCountReducer.class);
            //设置输入和输出目录
            FileInputFormat.addInputPath(job, new Path(paths[0]));
            FileOutputFormat.setOutputPath(job, new Path(paths[1]));
            //启动运行
            System.exit(job.waitForCompletion(true) ? 0:1);
        } catch (IOException e) {
            e.printStackTrace();
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

二、通过 Hadoop 建立倒排索引

倒排索引就是根据单词内容来查找文档的方式,由于不是根据文档来确定文档所包含的内容,进行了相反的操作,所以被称为倒排索引, 它是搜索引擎最为核心的数据结构,以及文档检索的关键部分。

下面来看一个例子来理解什么是倒排索引

这里我准备了两个文件 分别为1.txt和2.txt

1.txt的内容如下

    I Love Hadoop
    I like ZhouSiYuan
    I love me

2.txt的内容如下

I Love MapReduce
I like NBA
I love Hadoop

我这里使用的是默认的输入格式TextInputFormat,他是一行一行的读的,键是偏移量。

所以在map阶段之前的到结果如下 
map阶段从1.txt的得到的输入

0   I Love Hadoop
15  I like ZhouSiYuan
34  I love me

map阶段从2.txt的得到的输入

0   I Love MapReduce
18  I like NBA
30  I love Hadoop

map阶段 
把词频作为值 
把单词和URI组成key值 
比如 
key : I+hdfs://192.168.52.140:9000/index/2.txt value:1

为什么要这样设置键和值? 
因为这样设计可以使用MapReduce框架自带的map端排序,将同一单词的词频组成列表

经过map阶段1.txt得到的输出如下

I:hdfs://192.168.52.140:9000/index/1.txt            1
Love:hdfs://192.168.52.140:9000/index/1.txt         1
MapReduce:hdfs://192.168.52.140:9000/index/1.txt    1
I:hdfs://192.168.52.140:9000/index/1.txt            1
Like:hdfs://192.168.52.140:9000/index/1.txt         1
ZhouSiYuan:hdfs://192.168.52.140:9000/index/1.txt   1
I:hdfs://192.168.52.140:9000/index/1.txt            1
love:hdfs://192.168.52.140:9000/index/1.txt         1   
me:hdfs://192.168.52.140:9000/index/1.txt           1

经过map阶段2.txt得到的输出如下

I:hdfs://192.168.52.140:9000/index/2.txt            1
Love:hdfs://192.168.52.140:9000/index/2.txt         1
MapReduce:hdfs://192.168.52.140:9000/index/2.txt    1
I:hdfs://192.168.52.140:9000/index/2.txt            1
Like:hdfs://192.168.52.140:9000/index/2.txt         1
NBA:hdfs://192.168.52.140:9000/index/2.txt          1
I:hdfs://192.168.52.140:9000/index/2.txt            1
love:hdfs://192.168.52.140:9000/index/2.txt         1   
Hadoop:hdfs://192.168.52.140:9000/index/2.txt       1

1.txt经过MapReduce框架自带的map端排序得到的输出结果如下

I:hdfs://192.168.52.140:9000/index/1.txt            list{1,1,1}
Love:hdfs://192.168.52.140:9000/index/1.txt         list{1} 
MapReduce:hdfs://192.168.52.140:9000/index/1.txt    list{1}
Like:hdfs://192.168.52.140:9000/index/1.txt         list{1}
ZhouSiYuan:hdfs://192.168.52.140:9000/index/1.txt   list{1}
love:hdfs://192.168.52.140:9000/index/1.txt         list{1}
me:hdfs://192.168.52.140:9000/index/1.txt           list{1}



![img](https://img-blog.csdnimg.cn/img_convert/42ab5106c709361aa95a66c30fcd735c.png)
![img](https://img-blog.csdnimg.cn/img_convert/047ecf35fa4df3fdd440319d2cb9fc00.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618658159)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

:9000/index/1.txt         list{1}
me:hdfs://192.168.52.140:9000/index/1.txt           list{1}



[外链图片转存中...(img-HKGpi1jk-1715903036375)]
[外链图片转存中...(img-etSyhSl8-1715903036376)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618658159)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值