生成句法分析树以及从一个小例子来看词义消歧及语义角色标注_句法树例子

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

样子如下:

-吃(v)-

|                      |

我(rr)            肉(n)

句法结构分析基本方法

分为基于规则的分析方法和基于统计的分析方法。基于规则的方法存在很多局限性,所以我们采取基于统计的方法,目前最成功的是基于概率上下文无关文法(PCFG)。基于PCFG分析需要有如下几个要素:终结符集合、非终结符集合、规则集。

相对于先叙述理论再举实例的传统讲解方法,我更倾向于先给你展示一个简单的例子,先感受一下计算过程,然后再叙述理论,这样会更有趣。

例子是这样的:我们的终结符集合是:∑={我, 吃, 肉,……},这个集合表示这三个字可以作为句法分析树的叶子节点,当然这个集合里还有很多很多的词

我们的非终结符集合是:N={S, VP, ……},这个集合表示树的非页子节点,也就是连接多个节点表达某种关系的节点,这个集合里也是有很多元素

我们的规则集:R={

NN->我    0.5

Vt->吃     1.0

NN->肉   0.5

VP->Vt NN    1.0

S->NN VP 1.0

……

}

这里的句法规则符号可以参考词性标注,后面一列是模型训练出来的概率值,也就是在一个固定句法规则中NN的位置是“我”的概率是0.5,NN推出“肉”的概率是0.5,0.5+0.5=1,也就是左部相同的概率和一定是1。不知道你是否理解了这个规则的内涵

再换一种方法解释一下,有一种句法规则是:

S——|

|        |

NN    VP

|——|

Vt     NN

其中NN的位置可能是“我”,也可能是“肉”,是“我”的概率是0.5,是“肉”的概率是0.5,两个概率和必为1。其中Vt的位置一定是“吃”,也就是概率是1.0……。这样一说是不是就理解了?

规则集里实际上还有很多规则,只是列举出会用到的几个

以上的∑、N、R都是经过机器学习训练出来的数据集及概率,具体训练方法下面我们会讲到

那么如何根据以上的几个要素来生成句法分析树呢?

(1)“我”

词性是NN,推导概率是0.5,树的路径是“我”

(2)“吃”

词性是Vt,推导概率是1.0,树的路径是“吃”

(3)“肉”

词性是NN,概率是0.5,和Vt组合符合VP规则,推导概率是0.5*1.0*1.0=0.5,树的路径是“吃肉”

NN和VP组合符合S规则,推导概率是0.5*0.5*1.0=0.25,树的路径是“我吃肉”

所以最终的树结构是:

S——|

|        |

NN    VP

我      |——|

Vt     NN

吃     肉

上面的例子是比较简单的,实际的句子会更复杂,但是都是通过这样的动态规划算法完成的

提到动态规划算法,就少不了“选择”的过程,一句话的句法结构树可能有多种,我们只选择概率最大的那一种作为句子的最佳结构,这也是“基于概率”上下文无关文法的名字起源。

上面的计算过程总结起来就是:设W={ω1ω2ω3……}表示一个句子,其中的ω表示一个词(word),利用动态规划算法计算非终结符A推导出W中子串ωiωi+1ωi+2……ωj的概率,假设概率为αij(A),那么有如下递归公式:

αij(A)=P(A->ωi)

αij(A)=∑∑P(A->BC)αik(B)α(k+1)j©

以上两个式子好好理解一下其实就是上面“我吃肉”的计算过程

以上过程理解了之后你一定会问,这里面最关键的的非终结符、终结符以及规则集是怎么得来的,概率又是怎么确定的?下面我们就来说明

句法规则提取方法与PCFG的概率参数估计

这部分就是机器学习的知识了,有关机器学习可以参考《机器学习教程

首先我们需要大量的树库,也就是训练数据。然后我们把树库中的句法规则提取出来生成我们想要的结构形式,并进行合并、归纳等处理,最终得到上面∑、N、R的样子。其中的概率参数计算方法是这样的:

先给定参数为一个随机初始值,然后采用EM迭代算法,不断训练数据,并计算每条规则使用次数作为最大似然计算得到概率的估值,这样不断迭代更新概率,最终得出的概率可以认为是符合最大似然估计的精确值。

总结一下

句法分析树生成算法是基于统计学习的原理,根据大量标注的语料库(树库),通过机器学习算法得出非终结符、终结符、规则集及其概率参数,然后利用动态规划算法生成每一句话的句法分析树,在句法分析树生成过程中如果遇到多种树结构,选择概率最大的那一种作为最佳句子结构

二、从一个小例子来看词义消歧

日后再说这个成语到了当代可以说含义十分深刻,你懂的,但是如何让计算机懂得可能有两种含义的一个词到底是想表达哪个含义呢?这在自然语言处理中叫做词义消歧,从本节开始我们从基本的结构分析跨入语义分析,开始让计算机对语言做深层次的理解

词义消歧

词义消歧是句子和篇章语义理解的基础,是必须解决的问题。任何一种语言都有大量具有多种含义的词汇,中文的“日”,英文的“bank”,法语的“prendre”……。

词义消歧可以通过机器学习的方法来解决。谈到机器学习就会分成有监督和无监督的机器学习。词义消歧有监督的机器学习方法也就是分类算法,即判断词义所属的分类。词义消歧无监督的机器学习方法也就是聚类算法,把词义聚成多类,每一类是一种含义。

有监督的词义消歧方法

基于互信息的词义消歧方法

这个方法的名字不好理解,但是原理却非常简单:用两种语言对照着看,比如:中文“打人”对应英文“beat a man”,而中文“打酱油”对应英文“buy some sauce”。这样就知道当上下文语境里有“人”的时候“打”的含义是beat,当上下文语境里有“酱油”的时候“打”的含义是buy。按照这种思路,基于大量中英文对照的语料库训练出来的模型就可以用来做词义消歧了,这种方法就叫做基于“互信息”的词义消歧方法。讲到“互信息”还要说一下它的起源,它来源于信息论,表达的是一个随机变量中包含另一个随机变量的信息量(也就是英文信息中包含中文信息的信息量),假设两个随机变量X、Y的概率分别是p(x), p(y),它们的联合分布概率是p(x,y),那么互信息计算公式是:

I(X; Y) = ∑∑p(x,y)log(p(x,y)/(p(x)p(y)))

以上公式是怎么推导出来的呢?比较简单,“互信息”可以理解为一个随机变量由于已知另一个随机变量而减少的不确定性(也就是理解中文时由于已知了英文的含义而让中文理解更确定了),因为“不确定性”就是熵所表达的含义,所以:

I(X; Y) = H(X) - H(X|Y)

等式后面经过不断推导就可以得出上面的公式,对具体推导过程感兴趣可以百度一下。

那么我们在对语料不断迭代训练过程中I(X; Y)是不断减小的,算法终止的条件就是I(X; Y)不再减小。

基于互信息的词义消歧方法自然对机器翻译系统的效果是最好的,但它的缺点是:双语语料有限,多种语言能识别出歧义的情况也是有限的(比如中英文同一个词都有歧义就不行了)。

基于贝叶斯分类器的消歧方法

提到贝叶斯那么一定少不了条件概率,这里的条件指的就是上下文语境这个条件,任何多义词的含义都是跟上下文语境相关的。假设语境(context)记作c,语义(semantic)记作s,多义词(word)记作w,那么我要计算的就是多义词w在语境c下具有语义s的概率,即:

p(s|c)

那么根据贝叶斯公式:

p(s|c) = p(c|s)p(s)/p(c)

我要计算的就是p(s|c)中s取某一个语义的最大概率,因为p©是既定的,所以只考虑分子的最大值:

s的估计=max(p(c|s)p(s))

因为语境c在自然语言处理中必须通过词来表达,也就是由多个v(词)组成,那么也就是计算:

max(p(s)∏p(v|s))

请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址

下面就是训练的过程了:

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

img-k0aScoZR-1715580878521)]
[外链图片转存中…(img-O77S8qHh-1715580878521)]
[外链图片转存中…(img-rTtJH3aC-1715580878521)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值