网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
Vehicledepartment用车部门 合合信息 Transporttime用车时间 2020年5月20日 Number ofpassengers乘车人数 14人 Destination目的地 上海静安区市北·云立方 Contact联系人 合小合 contactnumber联系电话 18888888888 Driver drive safely and on time司机驾车安全、准时性 Car reason(用车事由):公务出行 drive safely安全驾驶pick-up on time接送准时(Check after the car is finished bythe rider.由乘车人用车结束后勾选) License plate number 车牌号沪M888888 Driver’s name 司机姓名合小安 contact number联系电话021-88888888 Pick-Up Locations 接送地点上海工业园区88号 Person incharge audit用车部门负责人 刘杨 Administrativemanager行政部负责人 杨周
4.2、拍摄文稿
通常文稿扫描都是使用拍摄图片进行。接下来我们尝试用自己拍摄的图像来进行测试,拍照时人为添加一些困难。左侧是被识别图像,这里认为制造了阴影、褶皱等,加大识别难度。右侧则是识别结果,可以看出大致内容被正常识别出来了。
下面是一部分内容:
以下五个部分:
(1)采样孔:使数字化设备实现对特定图像元素的观测,不受图像其他部分的影响。
(2)图像扫描机构:使采样孔按照预先定义的方式在图像上移动,从而按顺序观测每
一个像素。
(3)光传感器:通过采样检测图像的每一个像素的亮度,通常采用CCD阵列。
(4)量化器:将光传感器输出的连续量转化为整数值。典型的量化器是A/D转换电
路,它产生一个与输入电压或电流成比例的数值。
4.3、词云图像
除了上述两种常规图像,TextIn还可以扫描证件照、简历、房产证、词云等复杂图像,比如下面是一个词云的例子:
相比前面几个问题,词云的情况要更为复杂。这里的文本是多语言、多角度的,识别起来非常困难。在TextIn中识别结果非常可以:
ПриветT.
Ahoj.
Kaixo.
Bunǎ.
Përshëndetje.
Haloo.
Прывітанне
Salam
在识别出文字的同时还以相应的语言展示出来。
4.4、摩尔纹去除
在我们对电子产品拍照时,会出现一些奇怪的纹理,这种纹理就是摩尔纹。消除摩尔纹可以提高图像、文字清晰度,更便于识别。摩尔纹识别也可以使用深度学习的方式实现,可以训练专门的摩尔纹去除网络。这里是去除摩尔纹的一个体验地址,下面是带有摩尔纹图像及出去摩尔纹图像的对比:
去除后可以很清晰看到文字内容。
4.5、PS智能检测
处理上面和文稿相关的扫描、文字识别等任务外,TextIn还可以进行PS智能检测,检测图像是否PS过。在防诈骗时非常有效。现在PS技术非常成熟,很多PS过的图像人眼无法辨别,可以用PS伪造转载记录、学历证书、纸质证明文件等。使用PS智能检测可以很好的辨别这些伪造的图像,这里我们对正常图像进行人为的PS处理,然后在TextIn进行测试。
左侧是使用了PS的图像,用人眼很难判断是否被PS过。右侧是检测结果,除了会显示是否有篡改,结果还会展现被篡改的区域。
4.6、去除水印
去除水印也是我们经常需要用到的功能,有时候我们下载图像时会自动添加一些水印,会遮挡一部分内容。TextIn中提供了去除水印的功能,可以在TextIn进行体验,下面是实际效果的一个例子:
左侧是处理后的效果,右侧是带有水印的效果。首先去除水印的效果非常好,水印被正常去除了。并且去除水印的部分没有模糊的感觉。
另外我们可以做一件有趣的事,可以手动给一个文档添加水印,然后使用TextIn对其去水印,再把去水印的结果交给前面提到的PS智能检测检测是否被篡改过,可以发现一个非常有趣的现象。大家可以自行测试。
4.7、自动擦除手写文字
在TextIn中还有个有趣的功能,就是自动擦除手写文字。这个在我们扫描试卷时非常有用,此功能可以在TextIn体验。下面是测试结果:
我们测试的是一张已经写过和批改过的试卷,试卷里用包括手写英文,人为框选、勾叉等。在去除后,手写的部分都被去除了,而试卷本身的内容则保留了。另外,去除结果还对原图像进行了一个增强,更便于观看。
4.8、印章检测识别
对于一些企业,可能会使用到印章识别检测的功能。印章的文字通常是弯曲的,一般的文字识别程序不能很好的处理,在TextIn中提供了印章检测识别的功能。包括检测图像中的印章、识别印章中的文字,下面是一个具体效果:
左图是被检测图像,图像中有多个印章。右图是检测结果,把每个印章检测出来了,并识别出印章的文本内容。上述功能可以在TextIn体验。
4.9、其它功能
除了上述功能,TextIn还能做诸如二维码识别、票据识别、车辆相关识别、个人证据识别等功能。另外还有文档转换功能,下面是可以使用的一些接口:
上面功能可以直接直线体验,也可以使用TextIn提供的API,将功能接入自己的应用程序。具体api文档可以参考https://www.textin.com/document/index。
比如下面是Python通用文字识别的一段代码:
import requests
import json
def get\_file\_content(filePath):
with open(filePath, 'rb') as fp:
return fp.read()
class CommonOcr(object):
def \_\_init\_\_(self, img_path):
# 请登录后前往 “工作台-账号设置-开发者信息” 查看 x-ti-app-id
# 示例代码中 x-ti-app-id 非真实数据
self._app_id = 'c81f\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*e9ff'
# 请登录后前往 “工作台-账号设置-开发者信息” 查看 x-ti-secret-code
# 示例代码中 x-ti-secret-code 非真实数据
self._secret_code = '5508\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*1c17'
self._img_path = img_path
def recognize(self):
# 通用文字识别
url = 'https://api.textin.com/ai/service/v2/recognize'
head = {}
try:
![img](https://img-blog.csdnimg.cn/img_convert/2d1313b23a1cdcc584743cafc56737a8.png)
![img](https://img-blog.csdnimg.cn/img_convert/9e6b621a6fc00901483471d75f2b2614.png)
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618668825)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618668825)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**