- 博客(39)
- 收藏
- 关注
原创 OCR-Android端问题总结
我们在PC端使用的模型参数文件为pth格式,而andorid端读取模型参数格式的要求为pt,因此需要我们对模型参数进行转换。
2023-04-03 19:35:06 489 1
原创 Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering阅读报告
虽然机器学习(ML)模型越来越被信任,可以在不同的领域做出决策,但使用这种模型的系统的安全性也越来越受到关注。特别是,ML模型通常使用来自潜在不可信来源的数据进行训练,为对手提供了通过将精心制作的样本插入训练集中来操纵它们的机会。最近的工作表明,这种类型的攻击被称为投毒攻击,允许对手在模型中插入后门或木马程序,在推断时使用简单的外部后门触发器,并且仅从模型本身的黑盒角度启用恶意行为。检测这种类型的攻击具有挑战性,因为只有当存在后门触发器时才会发生意外行为,而只有对手知道该触发器。
2023-01-08 23:27:23 469
原创 图片方向矫正
二维Radon变换定义:将(x,y)平面空间中的一条直线p=xcosθ+ysinθ映射成Radon空间的一个点(p,θ),R(p,θ)=∬Df(x,y)δ(p−xcosθ−ysinθ)dxdy;其中δ(x)={01x!=0x=0。
2022-11-09 20:15:50 979
原创 DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep Model Inspection论文阅读报告
联邦学习(FL)允许多个客户在其私有数据上协作训练神经网络(NN)模型,而不会泄露数据。最近,针对FL的几起针对性中毒袭击事件已经出台。这些攻击为生成的模型注入了后门,使得对手控制的输入被错误分类。现有的反后门攻击的对策效率低下,通常只是为了将偏离模型排除在聚合之外。然而,这种方法还删除了具有偏差数据分布的客户机的良性模型,从而导致聚合模型对此类客户机的性能不佳。为了解决这个问题,我们提出了DeepSight,一种用于缓解后门攻击的新型模型过滤方法。
2022-11-04 16:06:15 1039 2
原创 2022/7月日报
机器学习在游戏中的应用:1.第一个是创建NPC,有多种行为的NPC, NPC已经学习了很多人类行为,这会让与人类的交互更为自然。2.游戏戏本身。AI能够为优化玩家的乐趣进行学习,而不是为开发者的乐趣而进行优化。对于玩家来说,会有更多个性化和定制化的东西。具体例子:3.用机器学习在游戏发布前测试游戏。确保使用agent代替人类玩家进行游戏时,你能够了解游戏是否能顺利进行。.........
2022-07-12 20:22:22 543
原创 论文阅读报告
后门特征描述:Benign models:良性模型;Backdoored models:后门攻击模型;Deviations of Backdoored models:后门模型的偏差;Gt−1G_{t-1}Gt−1:上一轮局部模型和全局模型之间的偏差;W1,,W2,,W3,,W_{1}^{,},W_{2}^{,},W_{3}^{,},W1,,W2,,W3,,:分别代表三种不同的后门攻击;防御目标:在FL环境下,能够有效缓解后门攻击的通用防御需要实现以下目标:(i)有效性:为了防止对手实
2022-06-23 16:47:13 1093 2
原创 2048项目实现
0 2022/5/271 2048using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threading.Tasks;namespace _2048{ public class MatrixOperation { public int[] SmoothAndNum(int[,] matrix) {
2022-05-27 17:01:54 152
原创 2022-5-第四周日报
0 2022/5/231 Provably Secure Federated Learning against Malicious Clients代码复现1.1 aggregator.pyimport numpy as npclass FedAvg: def __init__(self, global_model, different_client_values, client_count): global_weights = np.array(global_model.
2022-05-23 19:19:40 550 1
原创 2022-5-第三周日报
2022/5/161 2048经过实验发现,前期单纯依靠平滑性控制难度,效果不理想,尝试加入连接性一起控制。此时选择连接两个8,最理想的情况应该是生成一个16。但实际情况是生成了一个8,原因是数量优先,因此要想做到理想情况,只能继续提高连接性的权重。1.1 实验结果经过验证我发现,我现在的评分计算公式存在问题。...
2022-05-16 19:54:57 295
原创 2022-5-第二周日报
2022/5/91 2048修改和优化代码。 def fill_grid_2(self, fill_steps, nums_list, difficulty_level_changge, num_path_last, now_num_path): num_max = np.max(self.Matrics) min = auto.matrix_min(self.Matrics) if np.log2(num_max) - np.log2(min) &g
2022-05-09 21:53:12 372
原创 2022-5月-第一周日报
2022 5/11 2048问题今天尝试了通过排序的方法控制游戏难度,但是并不能做到有效控制游戏的结束。例如:假设设置结束时间步数为300步。将游戏得分总共分为5个等级。那么每60步就是一个等级的得分。通过这种方法游戏大概都是在150步的时候结束。考虑到效率问题,只控制了三个棋子,会在一定程度上影响到游戏的难度控制。1.1 改进思路在我设计的评估函数中,平滑性和连接性是每一个局面都通用的,而数量优先和数值优先只会影响到当前局面。所以控制难度的时候应该以平滑性和连接性为指标。随着时间的推移平滑性
2022-05-01 18:42:03 1325
原创 2022/4/日报
0 2022/4/251 泰迪杯数据挖掘import numpy as npimport pandas as pdimport seaborn as snsimport matplotlib.pyplot as pltfrom adtk.detector import GeneralizedESDTestADfrom matplotlib.font_manager import FontPropertiesfrom statsmodels.graphics.tsaplots import p
2022-04-25 22:07:11 160
原创 2022-第二周-学习报告
0 2022/4/191 2048游戏已有工作和我们工作的区别目的不同:已有工作:AI是从玩家的角度去进行学习,但是系统如何生成棋子对于AI来说是未知的,所以需要使用一些算法来进行学习。我们的工作:我们是系统的角度去产生棋子,我们根据用户连接后来填充棋子,用户的做法是已知的。因此,我们只需要设计一个评估函数能使得游戏难度平滑增加。2 评估函数设计思路总分-细分:分各种情况去考虑系统填子的方式。2.1 已知信息用户连接棋子后的状态 ,即空缺状态。系统填充棋子后的状态,即填充状态。
2022-04-19 22:02:42 3096
原创 From AlphaGo Zero to 2048阅读报告
0 摘要游戏2048近年来获得了巨大的普及。游戏允许玩家在屏幕上移动数字(2的幂,如2、4、8、16等),总计至少2048。这是很容易学习发挥,因为它只有4个行动:向上,向下,左,右。然而,很难获得一个大于或等于2048的数字,因为你在当前状态下的每一个动作都会导致数百个不可预测的结果。在本文中,为了提高人工智能(AI)的自学习速度,以及为AI的自动游戏模式获得更高的分数,我们提出了一种类似于AlphaGo Zero到2048游戏的算法,该算法具有独特的奖惩系统。此外,基于带有AlphaBeta剪枝的Mi
2022-04-18 21:20:18 2435
原创 2048工作总结
20481 需求让用户在规定时间或步数内,玩到死局,但过程要做到平滑。2 已有解决方案2.1 方案一设计一个评估函数,对游戏局面进行评估,评估分数的高低近似为用户游戏体验的好坏。2.1.1 具体步骤状态:用户连接棋子后的游戏局面(即有空缺格子的游戏局面);动作:系统在空缺的位置填充数字;获取用户连接后的状态。穷举出所有可能的动作。利用评估函数对填充后的游戏局面进行打分。根据游戏进行的时间或步数选择相应得分的动作。2.1.2 评估函数MaxLength:当前局面能够连接的路径的
2022-04-15 17:45:04 2117
原创 2022-学习报告
DQN代码复现一、经验回放把所有样本存放在一起,随机抽取其中的样本进行训练。去除了序列决策的样本关联让样本可以重复利用代码实现import collectionsimport randomimport numpy as npclass ReplayMemory: def __init__(self, max_size): self.buffer = collections.deque(maxlen=max_size) def append(sel
2022-04-07 20:38:13 1495
原创 论文写作总结
自己之前对于写论文一直没有一个清晰的了解,关于如何做研究也是一头雾水,随之而来的就是对未知事物的恐惧,害怕做研究和写论文,但是通过论文写作这门课程,对写论文有了一个初步的认识,知道了一些写作的技巧,之后就是去实践,将这些技巧发扬光大。1.如何做研究1.1 做研究的目的研究不是研发,研发是在现有的知识和技术的基础上,做一些研制和开发工作。研究的根本目的去创造新的知识,从而促进技术的进步。1.2 做研究的过程TPIC -> Paper writing ->SubmitT:Topic
2021-12-24 13:34:45 328
原创 Analyzing User-Level Privacy Attack Against Federated Learning 阅读报告
本文的主要贡献:据我们所知,我们是第一个通过研究来自恶意服务器的攻击来分析联邦学习的隐私问题的人。此外,在推断类明智的代表之外,我们进一步以一种无形的方式恢复用户级隐私。我们提出了一种基于多任务GAN的通用攻击框架mGAN-AI,该框架对用户身份进行了新颖的识别,实现了用户级隐私泄露。我们进一步对mGAN-AI提出了一种针对潜在匿名策略的预先链接性攻击,该攻击通过关联来自不同客户端的数据代表来重新识别匿名模型更新。通过详尽的实验评价,验证了该方法的有效性和优越性。在MNIST和A T&T数
2021-12-12 14:45:53 637 1
原创 PoisonGAN: Generative Poisoning Attacks Against Federated Learning in Edge Computing Systems 阅读报告
生成中毒数据的算法:输入:训练数据DtrainD_{train}Dtrain,全局模型GtG_tGt,噪声样本ZnoiseZ_{noise}Znoise,标签YYY。输出:噪声数据DnoiseD_{noise}DnoiseStep1:初始化鉴别器D和生成器G。Step2:循环t次,t为全局模型更新的次数。Step3:把噪声样本中的数据输入到生成器G中生成xfake,然后把xfakex_{fake},然后把x_{fake}xfake,然后把xfake发送到D。Step4:如果xfak.
2021-12-05 21:42:16 1766
原创 联邦学习和Analyzing User-Level Privacy Attack Against Federated Learning阅读报告
联邦学习所具有的特点支持非独立同分布的数据不同客户端中的样本产生可能有差别。特征分布倾斜:不同的人写相同的字但字迹不一样。标签分布倾斜:不同地区的人用的表情不一样。标签相同,特征不同:两个不同的文字,但表示的意义一样。特征相同,标签不同:有的地方点头表示yes,有的地方点头表示no。数据不平衡。通信高效快速收敛安全性和隐私性用户构成复杂联邦学习的安全,隐私保护方向1.优势在保护数据隐私的前提下,实现由多个参与者的本地数据训练出统一的机器学习模型。2.存在
2021-11-21 19:02:56 4218
原创 第11周周报
在这里插入代码片Malware Detection on Highly Imbalanced Data through Sequence Modeling 总结创新点:提出了一种基于LSTM的恶意软件检测方法,利用了软件活动中的时间先后关系,但是需要大量的数据进行训练,现实中的数据很少。借用自然语言领域学到的知识。使用bert模型,来进行恶意软件的检测。由于bert模型是预训练模型,所以之后只需要少量的数据进行微调训练,解决了恶意软件数据不平衡的问题,同时最后的分类结果也很好。恶意软件检测技
2021-11-14 13:32:30 2424
原创 第三周周报
SQL注入安全测试中的危害威胁到数据库中的数据威胁到网站的权限SQL注入原理通过参数传递将恶意sql语句传入到sql语句来查询自己需要的信息。条件:可控变量,带入数据库查询,变量未存在过过滤或过滤不严谨...
2021-09-25 20:17:45 1322
原创 第二周周报
1. 多示例学习包和示例:包由多个示例组成,举例:一张图片就是一个包,图片分割出的patches就是示例,包带有标签而示例不带标签。2. 多粒度网络3.MNTD过程第一步将所有样本放入同一个集合中,再将集合中的样本放到相同大小的多个包中,第二步由于原始数据仅具有样本特征,无法在将包直接分类,使用样本聚类法计算代表点,然后采用包映射法计算每个包到代表点的相似性特征,快速提取包的特征来秒速包。...
2021-09-18 16:50:55 92
原创 人工智能安全方向周报
前言今天汝哥给我们讲解了如何快速进入研究以及几篇人工智能安全的相关文献,并布置了接下来我们的任务。1.快速进入研究的方法读文献->读综述性文献->自己写综述跟进已有的项目2.接下来的任务2.1 确定自己横向工作2.2 协助上线改论文2.3 根据张钹老师的文献进行调研,写一个简单的综述跟踪国内做人工智能安全的团队跟踪国外做人工智能安全的团队2.4讲自己读文献以及修改论文的理解3.小组成员关于人工智能安全的想法和问题3.1 蒋鑫恶意代码检测防御APT攻击AP
2021-09-14 22:10:16 691
原创 第二周作业
定义无向网络.A undirected net is a tuple G=(V,w),G = (\mathbf{V}, w) ,G=(V,w),whereV\mathbf{V}V is the set of nodes, and w:V×V→Rw: \mathbf{V} \times \mathbf{V} \to \mathbb{R}w:V×V→R is the weight of the arc (vi,vj)⇔(vj,vi).(v_i, v_j)\Leftrightarrow(v_j,v_i.
2021-08-02 22:47:37 83
原创 第三天作业
1.将向量下标为偶数的分量 (x2, x4, …) 累加, 写出相应表达式。∑i=2∗nxi\sum_{i=2*n}x_ii=2∗n∑xi2.各出一道累加、累乘、积分表达式的习题, 并给出标准答案.从1加到5:∑i=15i=15\sum_{i=1}^5i=15i=1∑5i=15从1乘到5:∏i=15i=120\prod_{i=1}^5i=120i=1∏5i=120求y=x2+x在[1,2]上的积分:求y=x^2+x在[1,2]上的积分:求y=x2+x在[1,2]上的积分:∫1.
2021-07-28 22:54:01 137
原创 魔鬼训练第二天作业
令A={1,2,5,8,9},写出A上的“模2同余”关系及相应的划分.令 \mathbf{A} = \{1, 2, 5, 8, 9\}, 写出 \mathbf{A} 上的 “模 2 同余” 关系及相应的划分.令A={1,2,5,8,9},写出A上的“模2同余”关系及相应的划分.R={{1,5,9},{2,8}}\mathbf{R}=\{ \{1, 5, 9\}, \{2, 8\}\}R={{1,5,9},{2,8}}A={1,2,5,8,9},自己给定两个关系R1和R2,并计算R1R2,R1+,R.
2021-07-27 21:29:20 88
原创 魔鬼训练第一天作业
描述你在学习、使用数学表达式时的困难, 可举例说明.看到复杂的表达式符号会有一种无从下手的感觉,要想看懂一个表达式,必须把每一个符号所代表的的意义都搞懂。在写表达式的时候,会犯一些和细小的错误,比如少个空格或者符号用的不对。令 A={3,5},写出2A\mathbf{A} = \{3, 5\} , 写出 2^{\mathbf{A}}A={3,5},写出2A{∅,{3},{5},{3,5}}.\{\emptyset, \{3\} ,\{5\},\{3,5\}\}.{∅,{3},{5},{3,5}.
2021-07-26 23:27:40 91
原创 离散数学入门级概念:集合、关系、元组
习题1:{0,1,{0,1},{1,2}}有几个元素? 机器学习中, 这类形式的集合有什么优点和缺点有四个元素,分别是0、1、{0,1}、{1,2}。优点:可以用于多标签学习。缺点:各个元素之间可能会存在依赖,同时由于各个元素维数的不同,解决实际问题时会很复杂。习题 2: ∅ 的基数是多少? { ∅ } 呢?∅的基数是0,{ ∅ }的基数是1。习题 5: 多标签学习中, 输出为一个向量,相应的学习器算不算函数呢?在多标签学习中虽然标签有多个,但是输出的向量是唯一的,它们之.
2021-05-04 15:08:43 393
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人