最新【逆强化学习-1】学徒学习(Apprenticeship Learning),2024年最新看完直接怼产品经理

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

i

)

s_t^{(i)}

st(i)​为第

i

i

i条轨迹的第

t

t

t个状态):

μ

(

π

)

=

1

n

i

=

1

n

t

=

0

γ

t

ϕ

(

s

t

(

i

)

)

\mu(\pi)=\frac{1}{n}\sum_{i=1}{n}\sum_{t=0}{\infty}\gammat\phi(s_t{(i)})

μ(π)=n1​i=1∑n​t=0∑∞​γtϕ(st(i)​)
在实际求解中,计算有限的时域

t

t

t近似即可。

\qquad

学徒学习的基本思想是寻找Reward使得所有的Agent产生的Reward都小于Expert的Reward的,再用这个reward去训练Agent。但为了防止Margin走向0和无穷大两个极端,在约束条件时还加入了一些限制。

该算法的步骤如下:

  1. 获得专家轨迹

π

E

\pi_E

πE​,定于特征提取函数

ϕ

(

s

t

)

,

t

=

1

,

2

,

.

.

.

,

N

\phi(s_t),t=1,2,…,N

ϕ(st​),t=1,2,…,N,产生一个Random Agent,迭代次数

g

=

0

g=0

g=0,随机设定一个

w

w

w,奖赏函数

r

ϕ

=

w

T

μ

(

π

)

r_\phi=w^T\mu(\pi)

rϕ​=wTμ(π)
2. 利用

ϕ

\phi

ϕ提取专家轨迹的特征

ϕ

(

s

1

(

E

)

)

,

ϕ

(

s

2

(

E

)

)

,

.

.

.

,

ϕ

(

s

N

(

E

)

)

\phi(s_1{(E)}),\phi(s_2{(E)}),…,\phi(s_N^{(E)})

ϕ(s1(E)​),ϕ(s2(E)​),…,ϕ(sN(E)​)
3. 定义折扣因子

γ

\gamma

γ并计算专家轨迹的特征期望

μ

(

π

E

)

=

t

γ

t

ϕ

(

s

t

(

E

)

)

\mu(\pi_E)=\sum_t\gammat\phi(s_t{(E)})

μ(πE​)=∑t​γtϕ(st(E)​)
4. 奖赏函数设为

r

ϕ

=

w

T

μ

(

π

g

)

r_\phi=w^T\mu(\pi_g)

rϕ​=wTμ(πg​),Agent与环境互动(可能会互动不止一次,因为model的更新需要时间),产生轨迹

π

g

\pi_g

πg​,提取特征为

ϕ

(

s

1

(

E

)

)

,

ϕ

(

s

2

(

E

)

)

,

.

.

.

,

ϕ

(

s

M

(

E

)

)

\phi(s_1{(E)}),\phi(s_2{(E)}),…,\phi(s_M^{(E)})

ϕ(s1(E)​),ϕ(s2(E)​),…,ϕ(sM(E)​),也计算Agent的轨迹期望值

μ

(

π

g

)

=

t

γ

t

ϕ

(

s

t

(

g

)

)

\mu(\pi_g)=\sum_t\gammat\phi(s_t{(g)})

μ(πg​)=∑t​γtϕ(st(g)​)
5. 求解最优

w

=

w

w=w^*

w=w∗以更新线性Reward函数

r

ϕ

=

w

T

μ

(

π

)

r_\phi=w^T\mu(\pi)

rϕ​=wTμ(π):

m

a

x

t

,

w

t

s

.

t

.

{

w

T

μ

(

π

E

)

w

T

μ

(

π

g

)

t

,

g

=

0

,

1

,

.

.

.

,

i

1

w

2

1

\begin{aligned}& max_{t,w}\quad t\ & s.t.\begin{cases}w^T\mu(\pi_E)\geq w^T\mu(\pi_g)+t,g=0,1,…,i-1 \[2ex] \lVert w\rVert_2\leq1 \end{cases} \end{aligned}

​maxt,w​ts.t.⎩

⎧​wTμ(πE​)≥wTμ(πg​)+t,g=0,1,…,i−1∥w∥2​≤1​​
6. g

=

g

1

g=g+1

g=g+1,若达到最大迭代次数,终止,否则转步骤4.

其他的步骤都没什么,主要是步骤(5),步骤(5)不仅不是线性规划,还带有一个令人讨厌的非线性约束(意味着只能采用拉格朗日乘子法),但如果大家仔细分析这个问题就会发现,损失函数只和t有关,而

w

w

w向量虽然有模长的限制,但是方向是可以随意变化的,那么为了让Margin最大,肯定要取和

μ

(

π

E

)

μ

(

π

g

)

\mu(\pi_E)-\mu(\pi_g)

μ(πE​)−μ(πg​)平行的方向,然后取到最大模长1,由此步骤(5)就迎刃而解。对于

g

=

0

,

1

,

2

,

.

.

.

,

i

g=0,1,2,…,i

g=0,1,2,…,i均成立的问题,只需要计算取Margin最小的

w

w^*

w∗以满足

t

t

t即可:

w

g

=

μ

(

π

E

)

μ

(

π

g

)

μ

(

π

E

)

μ

(

π

g

)

2

,

(

g

=

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

w

w向量虽然有模长的限制,但是方向是可以随意变化的,那么为了让Margin最大,肯定要取和

μ

(

π

E

)

μ

(

π

g

)

\mu(\pi_E)-\mu(\pi_g)

μ(πE​)−μ(πg​)平行的方向,然后取到最大模长1,由此步骤(5)就迎刃而解。对于

g

=

0

,

1

,

2

,

.

.

.

,

i

g=0,1,2,…,i

g=0,1,2,…,i均成立的问题,只需要计算取Margin最小的

w

w^*

w∗以满足

t

t

t即可:

w

g

=

μ

(

π

E

)

μ

(

π

g

)

μ

(

π

E

)

μ

(

π

g

)

2

,

(

g

=

[外链图片转存中…(img-EH38JbCk-1715875737568)]
[外链图片转存中…(img-wHOISWo3-1715875737569)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值