【SD教程】一文教你图生图批量处理!

今天给大家讲解一下SD图生图的批量处理功能应该如何让使用~(AI绘画SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,无需自行查找,有需要的小伙伴文末扫码自行获取。)

一、图生图批量处理功能的基本用法

首先打开webUI,在图生图页面下我们先找到批量处理的菜单:

最简单的批量处理方法只需要用到【输入目录】和【输出目录】两个功能:

第一步,需要建立一个输入目录的文件夹,大家注意不要用中文路径。

然后将要重绘的图片编号序号放到这个文件夹内:

接着我们将这个目录的路径粘贴到输入目录:

再建立一个文件夹用作输出图片用,注意路径也不要有中文:

将这个文件夹的路径粘贴到输出目录:

以上设置好之后我们就可以正常选择绘画模型,填写想要绘制的提示词和设置参数了。

例如我们想要重绘的是皮卡丘跳舞,那就在正向提示词中写入:一只皮卡丘在跳舞。

在下方设置重绘参数,注意重绘尺寸的宽高比例需要与重绘的图片一致:

最后我们点击生图,在输出的文件夹就会出现重绘后的图片了,注意如果输出文件夹没有出现重绘图,大家可以重新打开webUI尝试。

此时我们发现重绘的皮卡丘跟原图有点差异,为了提高重绘的精度,我们还需要学习下面这些进阶功能。

二、在批量处理中使用重绘蒙版

首先我们要了解什么是重绘蒙版?

重绘蒙版可以帮助我们更精细地控制重绘画面中元素的范围,例如我只想重绘皮卡丘而让图像的背景保持不变。

首先我们要用PS等软件给每张要重绘的图片绘制重绘蒙版(注意:白色区域是替换,黑色区域是保留不变的。)

将蒙版文件的目录贴入批量重绘蒙版目录 :

大家可以勾选这个Soft inpainting会让生成的图片过渡更加自然。

这张没有勾选能看到边缘过渡很硬~

这个勾选后的边缘就和缓多了。

最终我们在输出文件夹内就获得了我们用重绘蒙版获得的图片,可以看到背景跟原图基本保持了一致,只有皮卡丘被重绘了。

三、在批量处理中使用controlnet

为了让重绘的图片中皮卡丘的动作更加贴近原图,在这里我们还可以使用controlnet来批量重绘。

首先,打开controlnet点击启动、完美像素模式和上传独立控制的图像后选择批量处理,控制类型选择硬边缘,注意这里的目录可以先空着。

为了更好的控制图像,我们可以再增加一个controlnet,控制类型选择深度,输入目录同样不填。

然后我们回到上面的批量重绘那里,将原图的地址输入到这个controlnet输入目录这里:

最后我们就生成跟原图比较接近的重绘图像啦,经过测试,利用controlnet来批量重绘比重绘蒙版更方便效果也更好一些!

四、在批量处理中使用png图片信息

png图片信息适合当重绘不同的场景时使用。例如我们要重绘三张图,分别为一个皮卡丘、一棵树和一个初音未来:

然后针对这三个元素各自先用文生图生成一张图片:

**Prompt:**a pikachu,in the dance,best quality,masterpiece,best quality

**Prompt:**a tree,best quality,

masterpiece,HDR,UHD,8K,best quality,masterpiece

**Prompt:**hatsune miku,best quality,masterpiece,HDR,UHD,8K,best quality,masterpiece

将这三张携带有png信息的图片放置到一个文件夹内:

将目录填入png图片信息目录,打钩提示词、反向提示词、采样方法、迭代步数,并清空图生图的提示词 :

最后我们生图看一下效果:

原图

重绘后

原图

重绘后

原图

重绘后
文章使用的AI绘画SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,无需自行查找,有需要的小伙伴文末扫码自行获取。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

<think>嗯,用户在使用Stable Diffusion功能进行批量处理时遇到了片无法成到指定目录的问题。我需要先回忆一下Stable Diffusion的常见操作流程,特别是批量处理的相关设置。首先,用户可能没有正确设置输出目录,或者路径有误。其次,批量处理可能需要特定的脚本或参数,用户是否使用了正确的脚本?比如,用户可能直接在默认的界面操作,而没有使用“Process Multiple Images”这样的脚本。另外,文件权限问题也可能导致无法写入目标目录,尤其是Windows系统下的权限设置。还有,用户可能输入了错误的路径,比如使用了反斜杠而不是正斜杠,或者路径中有特殊字符。此外,Stable Diffusion的版本问题也可能导致功能异常,需要检查是否更新到最新版本。还有可能用户没有正确安装必要的依赖或扩展,导致脚本无法正常运行。接下来,我应该分步骤给出解决方案,从检查输出路径开始,然后确认脚本使用,检查文件权限,验证路径格式,查看错误日志,更新软件,处理文件名冲突,以及使用绝对路径等。需要确保每个步骤都清晰,用户能够逐步排查问题。同时,提醒用户注意路径中的特殊字符和空格,以及反斜杠的转义问题。可能还需要指导用户如何找到日志文件,或者如何启用调试模式查看更多信息。最后,如果所有方法都无效,建议用户到社区或论坛寻求帮助,并提供必要的错误信息。这样用户应该能系统地解决问题,确保批量处理片保存到正确的位置。</think>在Stable Diffusion(img2img)批量处理中,若遇到片无法成到指定目录的问题,可按照以下步骤排查和解决: --- ### **1. 确认输出路径设置** - **检查脚本参数** 使用批量处理脚本时(如`Process Multiple Images`或第三方扩展),需明确指定`Output directory`: ``` [正确示例] Output directory: D:/stable_diffusion/output_batch ``` ❌ 避免使用默认路径或留空 ✅ 路径使用正斜杠`/`,避免中文/特殊字符 - **路径权限验证** - Windows:右键目标文件夹 → 属性 → 安全 → 检查`写入`权限 - Linux/Mac:终端执行 `chmod 777 /your/target/path` 临时开放权限 --- ### **2. 正确选择批量处理脚本** - **官方脚本路径** 在WebUI界面依次点击: ``` img2img → Script → Process Multiple Images ``` ![脚本选择位置示意] - **扩展脚本推荐** 若需要更复杂批处理,可安装: - `Tiled Diffusion`(分块渲染扩展) - `Batch Processing Suite`(专用批处理工具) --- ### **3. 路径格式验证** - **错误示例** ```text C:\Users\MyDoc~1\输出#测试 // 包含空格、短路径、特殊符号 ``` - **修正方案** ```text D:/SD_Output/batch_2024 // 全英文+下划线,使用完整路径 ``` --- ### **4. 日志分析** - **定位日志文件** 在WebUI启动命令行中查找类似报错: ```log [Errno 13] Permission denied: '/target_path' OSError: [WinError 123] 文件名错误 ``` - **启用调试模式** 启动时添加参数 `--debug` 获取详细日志: ```bash python launch.py --debug ``` --- ### **5. 版本兼容性检查** - **更新核心组件** ```bash cd stable-diffusion-webui git pull # 更新主仓库 ./webui.sh --update-all # 更新扩展(Linux/Mac) ``` - **扩展冲突测试** 临时移出 `extensions` 文件夹下的非必要扩展 --- ### **6. 使用绝对路径保险方案** 在输入框直接粘贴带引号的绝对路径: ```text "D:/stable_diffusion/outputs/img2img_batch" ``` --- ### **典型问题解决方案矩阵** | 问题现象 | 优先检查项 | 解决方案 | |---------|-----------|----------| | 无任何输出文件 | 输出路径权限 | 修改文件夹权限 | | 部分文件成失败 | 文件名冲突 | 启用`Overwrite existing files` | | 路径报错红色提示 | 特殊字符 | 改用纯英文路径 | | 脚本不执行 | 扩展冲突 | 禁用其他扩展测试 | --- 如果以上步骤仍未解决,建议: 1. 在启动命令后添加 `--gradio-debug` 获取实时API交互数据 2. 到官方GitHub提交Issue时附带: - `webui.log` 完整日志 - 操作系统版本 - 使用的具体脚本名称和参数截
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值