AI绘画Stable Diffusion 漫画人物改真人,图生图实现教程!

本文介绍了如何通过图生图功能在StableDiffusion中实现漫改真人,包括图片上传、参数设置(如采样器、重绘强度)、提示词编写和大模型选择。同时探讨了AIGC技术的发展前景,以及学习资源和实战应用的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是设计师阿威。

所谓漫改真人,就是把一张二次元图片生成一张新的真人图片,在Stable Diffusion中,有很多方式实现,其中通过图生图的方式是最常用的方式,大概1-3分钟就可以完成。我们先看一下实现效果。

下面我们来详细看一下图生图实现漫改真人的具体实现方式。

【第一步】:图生图图片上传以及相关参数设置

在图生图功能菜单界面,我们选择【图生图】上传一张我们需要漫改的二次元照片。

下面进行相关参数设置。

  • 采样器:DPM++2M

### 使用 Stable Diffusion WebUI 进行训练 #### 什么是是指通过输入一张参考像以及一些参数设置,利用 AI 模型成新的像的过程。在 Stable Diffusion 中,WebUI 提供了一个友好的界面来进行此类操作[^2]。 #### 主要功能模块 Stable Diffusion WebUI 的功能支持多种模式和工具,包括但不限于以下几种: - **基础**:基于参考成新像。 - **手绘修正/涂鸦绘制**:允许用户通过简单的草或线条调整目标区域的内容。 - **局部重绘**:仅重新成指定部分的像内容,保留其他区域不变。 - **蒙版引导的编辑**:可以使用黑白掩码或者自定义颜色掩码实现更精确的控制。 - **批量处理**:一次性对多张片应用相同的变换逻辑。 - **反推提示词**:自动分析现有像的关键特征,并尝试推测其可能对应的文本描述[^3]。 #### 实际操作指南 以下是关于如何配置环境及执行具体任务的一些指导: 1. **准备阶段** - 下载安装好最新版本的 Stable Diffusion WebUI 软件包及其依赖项。 - 加载预训练权重文件至本地运行环境中以便于即时测试不同效果。 2. **启动服务端口访问页面** 执行命令如下所示以开启形化管理面板: ```bash python webui.py --listen --port=7860 ``` 3. **加载模型与扩展组件** 确认所使用的扩散网络架构适配当前项目需求;同时激活必要的附加脚本如 ControlNet 或者 Pose Detection 插件提升创作灵活性[^4]。 4. **设定基本参数** 用户需填写以下几个重要字段才能顺利开始渲染流程: - Prompt (正面指示语句卡) - Negative prompt (负面排除列表) - Sampling steps (采样迭代次数) - CFG scale (条件因子强度等级) 5. **导入素材源文件** 将待加工的照片拖拽上传到对应位置框内作为初始依据材料之一。 6. **启用高级选项(可选)** 如果希望进一步细化成果表现,则考虑采用下列策略优化细节呈现质量: - 利用“Denoising strength”滑竿调节去噪力度平衡真实感还原度与创意发挥空间之间的关系; - 结合特定风格迁移算法切换整体视觉基调方向; - 对某些特殊部位单独施加额外约束条件限制范围内的变动幅度不至于过大破坏原有结构比例协调性等问题发几率降低不少哦! 7. **提交作业等待完成反馈结果展示** --- ```python from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler model_id = "runwayml/stable-diffusion-v1-5" scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler).to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` 上述代码片段展示了如何借助官方库快速搭建简易管线实例用于初步探索验证概念可行性等方面的工作效率有所提高的同时也简化了许多繁琐的手动调试环节带来的不便之处[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值