用stable diffusion做服装设计-线稿图上色

一:大模型

majicMIX realistic 麦橘写实(需要模型的小伙伴无需自行查找,可文末扫码找我拿)

二:提示词

SD的关键词分为正面的和负面的

正面提示词:

best quality, masterpiece, detailed, highres, simple background, studio photography, extremely detailed, 1girl, updo, detailed face, face, closeup,HDR,UHD,8K,realistic,Highlydetailed,simplebackground,

Studio lighting,ultra-fine painting,sharp focus,physically-based rendering,extreme detail description,Professional,Vivid Colors,

负面提示词:

lowres,bad anatomy,bad hands,text,error,missing fingers,extra digit,fewer digits,cropped,worst quality,low quality,normal quality,jpeg artifacts,signature,watermark,username,blurry,

三:参数设置

高分辨率修复和Adetailer一起开一下,

效果会会更好,可根据图片修改参数设置,

四:contronet 设置

可以开一个,也可以两个一起使用,效果会更好

把图片上传到这里,勾选启用

预处理器选择:invert / tile resample

模型选择:scribble / control_v11fle_sd15_tile

控制权重:1(自行调整)

权重越高,字越明显;权重越低,字越不明显

引导介入步数:0.2

代表第几步介入对画面的影响,如,现在是一个生成步幅为30步的图像,现在介入时机为0.2,则从30x0.2=6,第六步的时候ControlNet开始介入。(出自hello小尹)

引导终止步数:0.9

代表第几步退出对画面的影响,如,现在是一个生成步幅为30步的图像,现在退出时机为0.8,则从30x0.8=24,第二十四步的时候ControlNet退出对输出的介入。(出自hello小尹)

ps:更改部分关键词,面料材质,颜色,细节等等,

就可以批量抽卡啦,来看看大图吧!!

好了,本次分享结束了。

喜欢玩AI的小伙伴们:如果对你有帮助,

文章使用的AI工具SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,无需自行查找,有需要的小伙伴文末扫码自行获取。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
<think>嗯,用户现在想了解适用于二次元片处理的AI模型有哪些。首先,我需要回忆一下目前比较流行的像生成模型,特别是针对动漫风格或二次元的。 首先想到的肯定是Stable Diffusion,因为它有很多专门针对二次元的变体,比如Waifu Diffusion。这个模型是专门训练在动漫数据集上的,应该适合生成和处理二次元片。另外,NovelAI Diffusion也是一个比较有名的模型,很多用户用它来生成高质量的二次元像,特别是在艺术创作方面。 然后,ControlNet可能也是一个相关的技术,用户提到的引用[2]里提到了Pix2Pix模型,不过ControlNet本身更多是用于控制生成过程,比如姿势、线稿上色等,这对二次元片处理应该很有帮助。比如用户上传线稿模型可以自动上色,或者调整风格。 还有腾讯的AnimeGAN,虽然可能不算大模型,但它在风格迁移方面效果不错,可以把真实照片转成动漫风格,可能也适用于二次元处理。另外,微软的FaceX-Zero基于StyleGAN,专注于动漫人脸生成,可能也是一个选择。 不过用户问的是大模型,所以可能需要区分哪些是真正的“大模型”,比如Stable Diffusion和NovelAI Diffusion都是基于扩散模型,参数规模较大。而像Waifu Diffusion是社区在Stable Diffusion基础上微调的,应该也算大模型。 还要考虑用户可能的实际需求,比如生成、编辑、上色、风格转换等不同任务,对应的模型可能不同。例如,线稿上色可能需要ControlNet结合Stable Diffusion,而生成全新像可能需要NovelAI或Waifu Diffusion。 另外,用户提到的引用[1]里提到大模型的输出结果受Prompt设计影响大,所以在推荐模型的时候,可能需要提到Prompt的技巧,比如使用特定的动漫风格关键词,或者结合ControlNet的控制条件来优化生成效果。 有没有其他模型呢?比如一些日本公司开发的,或者开源的?可能还有DeepDanbooru这样的标签模型,虽然不直接生成像,但可以帮助分类和标签处理,辅助生成更准确的二次元片。不过用户问题主要是生成和处理,可能不需要这个。 总结下来,主要的模型应该是Stable Diffusion系列(包括Waifu Diffusion)、NovelAI Diffusion、ControlNet的应用,以及AnimeGAN和FaceX-Zero。需要分别介绍它们的特点和适用场景,同时引用用户提供的引用[2]提到的ControlNet方法,说明其在指令式变换中的应用。 可能还需要提到这些模型的使用方式,比如通过HuggingFace、GitHub等平台获取,或者集成在某些工具中。此外,二次元片处理可能需要调整参数,比如颜色鲜艳度、线条清晰度,这些模型是否支持这样的调整? 最后,生成相关问题需要考虑用户可能的后续疑问,比如如何优化生成效果、比较不同模型的优缺点、具体操作步骤等。</think>### 适用于二次元片处理的AI模型 二次元片生成或处理的大模型主要通过深度学习技术实现风格迁移、像生成、细节优化等功能。以下是目前主流的模型及其特点: --- #### 1. **Stable Diffusion + 二次元专属变体** - **Waifu Diffusion** 基于Stable Diffusion框架,专为动漫风格优化的模型,训练数据包含大量二次元插画,可生成高分辨率、细节丰富的动漫像。支持通过Prompt控制角色特征(如发色、服装)和场景[^1]。 ```python # 示例代码(使用HuggingFace的diffusers库) from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained("hakurei/waifu-diffusion") image = pipeline("1girl, pink hair, cherry blossoms background").images[0] ``` - **NovelAI Diffusion** 针对日系动漫优化的商业模型,擅长生成复杂光影和细腻纹理,支持通过文本描述生成高质量插画[^2]。 --- #### 2. **ControlNet(适用于指令式编辑)** - 结合Stable Diffusion,通过边缘检测、线稿上色等功能实现二次元片的精准控制。例如: - **线稿上色**:输入线稿提示词(如“anime style, vibrant colors”),自动填充颜色。 - **姿势控制**:根据骨骼生成符合人体结构的动漫角色。 --- #### 3. **AnimeGAN** 由腾讯开发的风格迁移模型,可将真实照片转换为动漫风格。优势在于实时性和轻量化,适合移动端应用。 $$ G: \text{Photo} \rightarrow \text{Anime Style} $$ --- #### 4. **FaceX-Zero(动漫人脸生成)** 基于StyleGAN3的模型,专注于生成多样化二次元角色面部,支持调整五官、表情等细节。 --- #### 5. **DeepDanbooru(标签辅助生成)** 通过识别片标签(如“blue_eyes”、“twintails”),辅助生成符合特定属性的二次元像,常与Stable Diffusion结合使用。 --- ### 选择建议 - **生成原创角色**:优先选择Waifu Diffusion或NovelAI- **编辑现有片**:使用ControlNet进行指令式修改(如换色、补全)。 - **风格迁移**:尝试AnimeGAN或Style2Paints。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值