Stable Diffusion是一种革命性的图像生成模型,其发布标志着AI图像生成技术的一个重要里程碑。本文将通过详细的图解和实例演示,全面解析Stable Diffusion的工作原理。
一、Stable Diffusion概览
1.1 模型起源与特点
Stable Diffusion由CompVis、Stability AI和LAION的研究人员于2022年发布。它是一种基于扩散过程的图像生成模型,结合了物理学中的扩散过程、机器学习领域的变分自编码器和可逆网络,从而实现了高质量的图像生成。
二、扩散过程
正向扩散 (Forward Diffusion)
正向扩散过程是指从初始图像开始,逐步加入高斯噪声,直到图像变成纯噪声。这个过程可以通过以下步骤实现:
- 数据准备:使用大量图像数据训练模型,包括各种类型的图像如自然场景、人像、物体等。
- 正向扩散:从初始图像 �0x0 开始,在每一步 �t 加入一定量的高斯噪声,生成加噪后的图像 ��xt。
逆向扩散 (Reverse Diffusion)
逆向扩散过程是从纯噪声开始,逐步去噪,最终生成新的图像。这一过程通过以下步骤实现:
- 逆向扩散:从纯噪声图像开始,逐步去除噪声,最终生成符合输入条件的图像。
三、条件生成
Stable Diffusion支持条件生成,即根据特定的输入(如文本描述)生成图像。这一特性通过在U-Net中加入额外的条件编码器实现,确保生成的图像与给定的条件相匹配。
四、核心组件及功能
文本到图像(Text-to-Image, txt2img)
该功能允许用户仅通过文本提示来生成图像。例如,输入“paradise (天堂)、cosmic (广阔的)、beach (海滩)”等关键词,模型会输出符合这些描述的图像。
图像到图像(Image-to-Image, img2img)
除了文本到图像之外,Stable Diffusion还支持图像到图像的功能。这意味着可以对现有图像进行修改或增强,以符合新的文本描述。
五、技术实现细节
变分自编码器 (VAE)
Stable Diffusion使用变分自编码器来处理图像的潜在空间表示。VAE通过将高维图像压缩到低维潜在空间,并在该空间中进行扩散和逆扩散操作,从而实现高效的图像生成。
CLIP模型
为了更好地遵循文本条件,Stable Diffusion使用了CLIP模型作为文本编码器。CLIP可以在zero-shot的情况下在ImageNet上与ResNet50有同等的表现,