【Stable Diffusion】AI生成新玩法:图像风格迁移

【Stable Diffusion】

AI生成新玩法:图像风格迁移

1

背景导入

你是否曾梦想过让自己融入梵高的星空之中

或是将一幅风景画赋予毕加索的立体主义之魂

还是把人物送进宫崎骏的动画世界?

下面让我们来看看如何通过

Stable Diffusion

实现在图像中玩转艺术风格吧!

图像风格迁移

将一幅图片的内容与其他风格图的风格相融合,生成同时具有原特征和新风格的图像。

除了特殊艺术风格的融合,我们还能通过风格迁移实现建筑设计,甚至将花瓶的图案风格迁移到人物形象的设计上:

当我们在网上看见这么一张照片时

我们该如何去实现风格迁移呢?

首先打开Stable Diffusion,选择文生图选项

输入提示词,我们这里选择_masterpiece,the best quality 来控制生成图片的质量,a gril ,a
dragon
_为图片主要元素(当然,也可以选择其他图片来生成自己喜欢的风格)。

采样方法选择DPM++ 2M ,将迭代次数从20改为30 ,其它参数可以保持不变。

最后就到了我们今天的主角——ControlNet!它将帮助我们完成今天的风格迁移!首先打开ControlNet ,点击启用
,选择完美像素模式 ,并在单张图片处 上传我们想要模仿的图片。

控制类型选择全部,将预处理器改为ip-adapter****-auto ,模型选择control_v11e_sd15

_ip2p ,其他保持不变。

最后点击生成,就可以静待我们进行风格迁移之后图片啦!

成果展示

可以看出生成的图片还是与原图有些差异,但是基本风格和元素已经非常接近了。

3

结语

以Stable
Diffusion为例的图像风格迁移教程就到这里啦,希望能助力你的创意与想法变现,

相信你对艺术创作的大胆想象在数据库之外!

PS. 由于图像生成所占用的内存较大,使用Stable Diffusion前请注意留出足够存储空间哦

但由于AIGC刚刚爆火,网上相关内容的文章博客五花八门、良莠不齐。要么杂乱、零散、碎片化,看着看着就衔接不上了,要么内容质量太浅,学不到干货。

这里分享给大家一份Adobe大神整理的《AIGC全家桶学习笔记》,相信大家会对AIGC有着更深入、更系统的理解。

有需要的朋友,可以长按下方二维码,免费领取!

请添加图片描述

AIGC所有方向的学习路线思维导图

这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。如果下面这个学习路线能帮助大家将AI利用到自身工作上去,那么我的使命也就完成了:
在这里插入图片描述

AIGC工具库

AIGC工具库是一个利用人工智能技术来生成应用程序的代码和内容的工具集合,通过使用AIGC工具库,能更加快速,准确的辅助我们学习AIGC
在这里插入图片描述

有需要的朋友,可以点击下方卡片免费领取!

精品AIGC学习书籍手册

书籍阅读永不过时,阅读AIGC经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验,结合自身案例融会贯通。

在这里插入图片描述

AI绘画视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,科学有趣才能更方便的学习下去。

在这里插入图片描述

有需要的朋友,可以长按下方二维码,免费领取!

请添加图片描述

### 使用 Stable Diffusion 实现图像风格迁移 #### 准备工作 为了顺利实现图像风格迁移,需准备必要的环境和资源。确保安装了 Python 和 PyTorch,并配置好 CUDA 或 ROCm 支持以便利用 GPU 加速计算过程[^1]。 #### 安装依赖库 首先需要设置开发环境并安装所需的软件包。可以通过 pip 工具来快速完成这些操作: ```bash pip install torch torchvision torchaudio diffusers transformers accelerate safetensors ``` 这一步骤会下载并安装运行 Stable Diffusion 所必需的核心组件以及辅助工具集[^2]。 #### 下载预训练模型 接着要获取预先训练好的扩散模型权重文件。通常可以从官方仓库或其他可信来源处获得这些资源。对于本项目而言,建议使用 Hugging Face 提供的 `CompVis/stable-diffusion-v-1-4-original` 版本作为起点[^3]。 #### 配置参数与选项 根据具体需求调整超参数设定,比如迭代次数、学习率等;还可以指定输入图片路径及输出保存位置等细节信息。这部分可以根据个人喜好灵活定制化处理方式。 #### 运行脚本执行转换任务 编写一段简单的Python代码用于加载数据集、定义网络结构、调用推理函数最终得到目标效果图。下面给出一个简化版的例子说明整个流程的大致框架: ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "CompVis/stable-diffusion-v-1-4-original" scheduler = EulerAncestralDiscreteScheduler(beta_start=0.00085, beta_end=0.012) pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler).to("cuda") prompt = "a photograph of an astronaut riding a horse" image = pipe(prompt).images[0] image.save("./output/astronaut_rides_horse.png") ``` 这段程序展示了如何通过给定提示词(Prompt)生成一张具有特定主题的颖图画。当然,在实际应用当中可能还需要进一步优化和完善各个部分的功能模块以满足更复杂的应用场景下的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值