惠斯登电桥测电阻的新方法研究
摘 要
本文提出了两种利用惠斯登电桥测量电阻的新方法,并设计、完成了相应的实验测量工作。利用所得数据的处理结果,对原有方法和两种新方法做了详细的比较。结果表明,测量大电阻时,“新方法一”与原有方法有大致相当的精确度,而“新方法二”则具有好得多的准确度,但是精密度却要差得多;测量小电阻时,“新方法一”的精确度略优于原有方法,而“新方法二”的精确度则要比上述两者好得多。总得来说,无论测量的是大电阻还是小电阻,“新方法二”都要比原有方法及“新方法一”优越,而且它在原理上很大程度排除了导线电阻、接触电阻等额外电阻的不利影响。不过,“新方法二”也有着更为复杂的电路、更繁琐的测量步骤与数据处理过程的缺点。
【关键词】惠斯登电桥 标准电阻 最小二乘法
New Methods for Measuring Resistance
with Wheatstone Bridge
Abstract
In this article, two new methods have been presented for measuring resistance with Wheatstone bridge. And the corresponding experiments have been designed and completed. By using the processing results of the experimental data, detailed comparisons have been made between the original method and two new methods. The results indicate that, when measuring large resistance, the “New Method One” has roughly equivalent exactitude to the original method,and the “New Method Two” has much better accuracy,but the precision is much worse. When measuring small resistance,the exactitude of the “New Method One” is slightly better than the original method, and the exactitude of the “New Method Two” is much better than another two methods. In general, whether the measured resistance is high or low, the “New Method Two” is superior to the original method and the “New Method One”. And it largely eliminates, in principle, the adverse effects of additional resistances like wire resistance and contact resistance. However, the “New Method Two” also has the disadvantage such as more complex circuits, more complicated measurement steps and data processing processes.
【Key words】Wheatstone Bridge Standard resistance Least square method
惠斯登电桥是一种常见的单臂直流电桥,在精密测量、各种传感装置中都有着重要的应用。当前常用的利用惠斯登电桥来测电阻的方法仅适用于测量特定范围内的电阻值,当阻值较小时会出现较大误差。本选题的主要任务是提出并验证一种新的测量方法,以实现无论待测电阻是大是小皆可精确测量的目的。通过本选题的研究,可以进一步加深对惠斯登电桥的认识,这是本选题的理论意义。而它的实际意义在于,可为精确测量电阻提供更多的选择。
1843年,惠斯登(Charles Wheatstone,1802-1875)在英国皇家学会举办的贝克尔讲座(Bakerian Lecture)上描述了他设计“差动电阻测量仪”(differential resistance measurer),这也就是今天人们所说的直流惠斯登电桥了[1]。尽管惠斯登电桥出现的如此早,但是由于它的易于实现、用途广泛,直到现在仍旧不乏相关研究。
利用惠斯登电桥测电阻时,各桥臂上的导线电阻与接触电阻是测量误差的一个重要来源,尤其当待测电阻值较小时就更是如此了。2002年,刘先惠[2]提出了一种用于测量导线电阻与接触电阻的办法,并将此方法运用到一个实例上以展示导线在接线柱上的连接状态,导线的长度及粗细都会影响到上述电阻的事实。2005年,张明金[3]为了消除被测臂上导线电阻带来的误差,在比较臂上添加了一个补偿电阻盘。其做法是,先不接入待测电阻,让被测臂上只有导线电阻,再将比较臂上的测量盘电阻调节为零,然后调节补偿电阻盘使电桥达至平衡。这样,即可将被测臂上的导线电阻消除掉。除了上述方法外,张明金还介绍了三线连接法和四端钮连接法。此两种方法本质上都是通过采用特殊的连线方式来尽可能缩短被测臂导线长度,以期削弱导线电阻所带来的影响的。
电阻测量值的不确定度标志了测量的可信度。通过分析该不确定度,有助于了解如何降低测量误差。2014年,王锋等人[4]基于电桥平衡条件推导了电阻测量值的不确定度表达式,之后对一个实例进行了测量,所得到的数据经SPSS软件处理绘制成定标曲线,再通过在该曲线上选择特定坐标点最终算得了待测电阻值及其不确定度。王锋等人认为SPSS的使用提高了测量数据及实验结果的分析精度。2019年,姚星星等人[5]为了减小系统误差采用了通过交换比较臂共完成两次测量的方法来测量待测电阻。他们推出了此测量方法下电阻测量值不确定度的表达式,在将之运用于一个实例之后指出,不确定度受电桥灵敏度影响较小,而主要受电阻箱带来的系统误差的影响。
电桥灵敏度对测量误差也有影响。一般而言,电桥灵敏度越高,对电桥是否处于平衡状态的判定就越准确,因而也就能更加精确地测量电阻值了。2015年,王锦辉等人[6]研究了以恒流源为电源时电桥灵敏度受各相关因素影响的情况。他们使用伏特表来判断电桥的平衡情况,在推得了灵敏度的表达式之后利用伏特表内阻很大的条件对表达式作了近似处理,并由之得出结论认为,灵敏度与恒流源输出电流成正比,并且比较臂电阻越大、比例系数越小,灵敏度就越高。2018年,刘凤智[7]对以稳压源为电源时的电桥灵敏度作了讨论在给出灵敏度表达式之后,将之视作为比例臂的函数,给出了灵敏度取为极大值所应满足的条件。
惠斯登电桥除了其平衡状态外,它的非平衡状态也可以用来测量电阻。2007年,李林等人[8]对非平衡电桥测电阻进行了研究。他们使用伏特表来测量电桥输出电压,利用伏特表内阻为无穷大这一近似条件,推出了电桥输出电压的一般表达式,再由之推得了等式电桥、卧式电桥和立式电桥这三种桥式下的相应输出电压公式。接着,利用电阻测量范围的相对值趋于零这个条件将上述三个桥式的公式皆近似为线性表达式,给出了此一步近似所导致的非线性误差表达式。再结合电桥灵敏度公式,李林等人得出结论认为,等式电桥(卧式电桥)有更高的灵敏度,而立式电桥则有更小的误差和更大的测量范围。2015年,邓锂强[9]推导了非平衡电桥的检流计上的电流与待测电阻的函数关系式,之后利用多个阻值已知的待测电阻测得了多组由检流计电流和待测电阻阻值构成的数据,并由它们绘制出相应定标曲线,再借助此曲线来测量未知待测电阻的阻值。2017年,何兴昌等人[10]同样对非平衡电桥进行了研究。他们除了讨论了李林等人[8]所讨论的电桥输出端处于开路状态的情形外,还讨论了在电桥输出端连接负载的情形。前一种情形被称为电压电桥,后一种则被称为功率电桥。他们利用此两种电桥对几个实例分别测量了三种桥式(即等式电桥、卧式电桥和立式电桥)下待测电阻值随温度变化的情况。分析结果后指出,功率电桥有时会比电压电桥更精确,应根据具体的电阻类型来进行选择。对于线性电阻,用近似得到的线性测量公式要更精确一些;对于非线性电阻,则应采用近似之前的非线性测量公式。此外,他们还指出等式电桥和卧式电桥有更高的灵敏度,但是立式电桥却有更大的测量范围,这与李林等人得出的结论一致。
本论文一共有三章,第1章对惠斯登电桥作了简单介绍,讨论了惠斯登电桥的两种典型应用。第2章首先简单介绍了现在被普遍采用的惠斯登电桥测电阻的测量原理,然后提出了两种同样基于惠斯登电桥的新测量方法,详细讨论了此两种新方法的原理,给出了测量公式。第3章给出了第2章中提及的原有方法和两种新方法的实验步骤,并完成了相应的实验测量工作,获得了测量数据。之后,基于对测量数据的处理结果,详细讨论了三种方法的特点,比较了它们的优劣。
1 惠斯登电桥及其应用
1.1 惠斯登电桥
A |
B |
C |
G |
R1 |
R2 |
R3 |
R4 |
D |
图1.1 典型的直流单臂桥式电路 |
Rg |
图1.1所示是最常见的直流单臂桥式电路示意图。桥式电路常被称作电桥,而直流单臂桥式电路也常被称作惠斯登电桥。此种电桥具有四个桥臂,分别就是图1.1中电阻R1、R2、R3和R4所占据的支路。而B、D间连接有检流计(其内阻设为Rg)的支路就是所谓的电桥了。
惠斯登电桥有平衡电桥和非平衡电桥两大类。简单来说,当图1.1中B、D两点有相同电势时,检流计上不会有电流通过,此时就称电桥为平衡电桥;反之,若B、D间存在电压,则称电桥为非平衡电桥。
平衡电桥实际上可看作为是由非平衡电桥在满足特定条件后所得到的。设想图1.1中的电桥是非平衡电桥,且B点电势高于D点,则A、C间各支路的电流可设为图1.2中的样子:
A |
B |
C |
G |
R1 |
R2 |
R3 |
R4 |
D |
图1.2 非平衡惠斯登电桥中的有关设定 |
Rg |
U0 |
I1 |
I2 |
Ig |
I1 − Ig |
I2 + Ig |
由图中的设定可建立下述方程组:
(1.1)
若将A、C间电压U0视为已知量,则上式实际上是关于I1、I2、Ig的三元一次方程组
(1.2)
从此式容易知道,若要图1.2中所示电桥为平衡电桥,必须满足:
(1.3)
这就是电桥平衡条件。
1.2 惠斯登电桥的应用
1.2.1 测量电阻
A |
B |
C |
G |
R1 |
R2 |
Rx |
Rs |
D |
图1.3 惠斯登电桥测电阻的常见测量电路 |
利用电桥平衡条件测电阻是电桥的重要应用之一,图1.3中展示了此种应用情形下常用的电路。图中的Rx就是待测电阻,所在桥臂被称作测量臂;R1和R2为已知电阻,所在桥臂合称比例臂;Rs是可直接读取其阻值的可变电阻,一般称之为比较电阻,所在桥臂相应地被称为比较臂。整个测量过程可简述为,改变Rs的值直到检流计读数等于零时为止。此时电桥平衡,利用式(1.3)即可得:
(1.4)
将Rs读取出来之后代入上式即可得待测电阻的阻值。
1.2.2 测量弱磁场
A |
B |
C |
U |
R(B) |
R0 |
R0 |
R(B) |
D |
图1.4 惠斯登电桥测磁场的测量电路 |
U0 |
非平衡电桥也有重要应用,比如图1.4所示的测量弱磁场。如图中所示,电桥的四个桥臂中有两个上面的电阻皆为R0,剩下的两个桥臂上则是用巨磁阻材料制成的电阻,它们的阻值是外加磁场的函数记作R(B)。若设A、C两点间的电压为U0,则容易得B、D间电压U可表示为:
(1.5)
此外,电压U与外加磁场的磁感应强度大小B还满足关系:
(1.6)
式中的γ是灵敏度。利用以上两式就可以实现对弱磁场的测量,测量方法如下:首先将电路暴露于已知磁场下,通过改变磁场的B值来测得多组由B和U构成的实验数据;之后再利用这些数据,由式(1.6)通过最小二乘法算得γ值;然后,再将电路置于待测磁场中,测得U值后再利用式(1.6)得到待测磁场的磁感应强度大小。
2 惠斯登电桥测电阻的新方法
2.1 现有的方法
前文中给出了惠斯登电桥测电阻的原理,所基于的公式是式(1.4)。由此式可知,只要得到电桥达到平衡时的Rs值,就可算得待测电阻Rx了。只是可惜的是,这种做法只在理论上有较高的精确度,实际当中并不可取。原因在于,电阻R1和R2所在的支路中还存在其它电阻,主要是导线电阻以及接线处的接触电阻。若将该两条支路中的上述额外电阻分别记作ΔR1和ΔR2,则测量公式也就应该改写作:
(2.1)
由于式中的ΔR1和ΔR2都是未知值,因此根据此式并不能直接测出Rx来。为了解决这个问题,一般的做法是,对于给定的待测电阻,先作第一次测量,记录下电桥达到平衡时的比较电阻值,记作Rs。之后,交换待测电阻和比较电阻,做第二次测量,将电桥重新平衡时的比较电阻值记录为Rs′。第一次测量,有式(2.1)成立。对于第二次测量,因两个桥臂上电阻发生了相互交换,此时据式(1.3)可有:
注意,等号左边依然要考虑比较臂上实际存在的额外电阻。由此式即可得:
(2.2)
令式(2.1)和式(2.2)相乘即可得:
(2.3)
此式就是目前常用的测量公式。
2.2 适用于测量小电阻的新方法
上述方法中,只是考虑了两个比较臂存在额外电阻的问题,对于测量臂和比较臂上同样存在的额外电阻完全没有涉及,这显然是不妥当的。若设测量臂与比较臂上因导线电阻和接触电阻而引入的额外电阻分别为ΔRx和ΔRs,则在考虑各桥臂此类额外电阻后,图1.3中的电路图应矫正为下图中的样子:
A |
B |
C |
G |
R1 |
R2 |
Rx |
Rs |
D |
图2.1 考虑各桥臂上的额外电阻时的测量电路 |
ΔR1 |
ΔR2 |
ΔRx |
ΔRs |
容易得出图2.1中所示电桥的平衡条件为:
(2.4)
若Rx、Rs都比较大,就可以近似将上式等号左侧分式中的ΔRx和ΔRs忽略掉,此时式(2.4)就会化作式(2.1)。这意味着,前述的现有测量方法仅适用于Rx、Rs都比较大的情况。
针对Rx比较小的情形,我们提出下述新做法来处理。具体说来,就是将R1和R2选为比较大的值,此时式(2.4)等号右侧分式中的ΔR1和ΔR2皆可忽略,于是式(2.4)就会变作:
(2.5)
式中
(2.6)
与此同时,图2.1也应变为:
A |
B |
C |
G |
R1 |
R2 |
Rx |
Rs |
D |
图2.2 只考虑测量臂和比较臂上的额外电阻时的测量电路 |
ΔRx |
ΔRs |
在上述做法下,应按如下方式来作实验,即在图2.2所示的电路中,调节比较电阻使电桥平衡,将此时的比较电阻值记录为Rs,它和待测电阻满足式(2.5),这是第一次测量。然后,将图中的待测电阻与比较电阻互换,作第二次测量,即再一次调节比较电阻直到电桥平衡为止,将此时的比较电阻记录为Rs′。由于额外电阻源自于线路和接线点,与待测电阻、比较电阻无关,所以待测电阻和比较电阻互换不会改变ΔRx和ΔRs因此,上述第二次测量获得的Rs′ 必然满足:
(2.7)
联立式(2.5)和式(2.7)可以计算得:
(2.8)
这就是待测电阻较小时我们所提出的新的测量公式。需要强调的是,用此公式测量时,应将R1和R2取为较大的值,以提高精确度。
2.3 适用于测量任意电阻的新方法
前文给出了两种可分别测量大电阻和小电阻的方法。在此两种方法中,依旧需要忽略相关桥臂上的额外电阻。下面,我们给出一种新的测量方法,在此方法中无需再忽略任何额外电阻,而且对待测电阻的大小也无要求。
定义常量k满足:
(2.9)
我们将式(2.9)代入式(2.4),所得到的结果为:
(2.10)
需要注意的是,由于ΔR1和ΔR2是未知的,因此与k0不同,式(2.9)给定的k不能直接获得,它本身与Rx一样也是一个待测量。
本方法的主要步骤可简单叙述为,现在图2.1所示的电路中调节比较电阻直到电桥平衡为止,将此时的比较电阻值记录为Rs,它满足式(2.10)。之后,互换待测电阻与比较电阻,然后重新调节比较电阻直到电桥再次平衡为止,将此时的比较电阻值记录为Rs′。由于交换比较电阻和待测电阻不会改变各支路上的额外电阻,因此由式(2.10)类推即可知。Rs′ 所满足的公式应为:
(2.11)
联立式(2.10)和式(2.11)可得:
此式可化:
(2.12)
此式清楚的表明,Rs′ 与Rs间的关系是线性的,因此可以采用最小二乘法来最终获得结果。现在设已获得N组由Rs与Rs′ 所构成的数据,分别表示为(Rs1, Rs1′ )、(Rs2, Rs2′ )、……、(RsN, RsN′ )。需要注意的是,同组的两个数据是在同一个电路中仅通过交换比较电阻和待测电阻测得的;而异组数据却必须通过改变电路参数才能测得。比如,我们可以在测量臂(或比较臂)上接入一个变阻器,然后通过改变变阻器的阻值来获得一组一组的新数据。上述改变变阻器阻值的做法仅会改变ΔRx(或ΔRs),从而导致交换待测电阻与比较电阻前后测得的Rs与Rs′ 值发生变化,而不会改变k和Rx,所以式(2.12)对任意一组数据(Rsj, Rsj′ )(j = 1, 2, …, N)都是成立的。
由以上设定,根据最小二乘法可有:
(2.13)
(2.14)
式中
,
,
,
(2.15)
只要将测得的数据代入式(2.13)算得k值,再将k值代入式(2.14)即可获得待测电阻Rx的值。
3 不同方法下的惠斯登电桥测电阻实验
前文2.1节、2.2节和2.3节分别表述了一种利用惠斯登电桥来测量电阻的实验方法,本章将具体的利用这些方法来完成相应实验。为了叙述上的便利,下文中将以上三种方法依次称为“原方法”、“新方法一”和“新方法二”。
3.1 实验仪器介绍
主要用到的实验仪器及元件有GPS-2303C型直流稳压电源、ZX21型直流电阻箱、AC5-4型直流检流计和RX70-1W型标准电阻。图3.1中给出了以上器件的图像:
(a) |
(c) |
(b) |
(d) |
(e) |
图3.1 需要用到的实验仪器及元件:(a) GPS-2303C型直流稳压电源;(b) AC5-4型直流检流计;(c) ZX21型直流电阻箱;(d) RX70-1W型标准电阻(10KΩ);(e) RX70-1W型标准电阻(5Ω)。 |
图3.1(a)中的是固纬电子有限公司出品的GPS-2303C型直流稳压电源。此电源有两个输出通道CH1和CH2,两者有专属的电流调节旋钮、电压调节旋钮和电压与电流显示屏。通过控制两个TRACKING按钮的开关状态可以将两个输出通道配置为两个独立电压源(两个按钮皆弹出)、串联电压源(左按钮闭合,右按钮弹出)和并联电压源(两个按钮皆闭合)三种状态。此外,该电源除了电源开关外还有一个OUTPUT输出控制按钮,它可以起到类似于单刀开关的作用。
图3.1(b)中的是富阳华盛仪器制造有限公司2007年出品的AC5-4型直流检流计。此检流计最大可以测量正、反两个方向上的10μA电流值,具备不通电机
械调零和通电后处于短路状态时进行调零的功能,精度为1.5级。
图3.1(c)中的杭州精科仪器有限公司2019年出品的ZX-21型直流电阻箱。此电阻箱有六个步进盘,步进值依次为0.1、1、10、100、1000和10000Ω,分别可在0~0.9、0~9、0~90、0~900、0~9000和0~90000Ω范围内调节电阻值。这即是说,此变阻箱理论上可调节出0~99999.9Ω范围上的电阻值。另外,六个步进盘的准确度按步进值自小到大的顺序依次为±5%、±0.5%、±0.2%、±0.1%、±0.1%、±0.1%。
图3.1(d)和图3.1(e)中分别是标称值为10000Ω和5Ω的RX70型标准电阻。两者的额定功率都为1W,阻值精度都为±0.01%,温度系数也都是±10~±25×10−6/℃。
3.2 “原方法”下的实验
前文2.1节中给出了目前惠斯登电桥测电阻实验中受到广泛采用的测量方法的基本原理,而本文据此原理进行测量的电路图为:
图3.2 采用“原方法”和“新方法一”来测量电阻时所采用的电路图 |
R1 |
R2 |
直流稳压电源 |
直流检流计 |
Rs |
Rx |
3.2.1 大电阻的测量
取标称值为10000Ω的标准电阻来充当待测电阻,实验步骤可叙述如下:
- 将TRACKING下的两个按钮以及电源输出按钮都置于弹出状态。之后,逆时针转动CH1通道的电流调节旋钮与电压调节旋钮,直至两者皆到底为止。
- 用两根导线分别将充当R1的电阻箱(简称之为R1)和充当R2的电阻箱(简称之为R2)两者的公共端连接到稳压电源CH1通道的正极输出端。
- 将检流计的正极与负极各用一根导线分别连接到R1和R2的标记为99999.9的端子上。
- 用导线将R1的99999.9端子连接在充当待测电阻Rx的标准电阻(简称之为Rx)的一端上,再用另一根相同的导线将R2的99999.9端子连接在充当比较电阻Rs的电阻箱(简称之为Rs)的公共端上。
- 用两根导线分别将Rx的另一端和Rs的99999.9端子连接到稳压电源的CH1通道的负极输出端上。之后,将R2调节为20000Ω。
- 将Rs调节为9500Ω并作记录,然后根据标准电阻Rx的标称值Rx0将R1调节为最接近R2Rx0/Rs的数值。
- 打开稳压电源,摁下输出开关,然后在CH1通道下顺时针转动电流调节旋钮直到其右侧的绿灯亮起来为止。之后,再顺时针转动电压调节旋钮,直至输出电压值达到最大值31.6V为止。
- 调节R1,直到检流计指针最接近零刻度线为止。
- 关闭稳压电源上的输出开关,然后交换Rs和Rx(即在图3.2中将连接R1与Rx的导线自Rx上解下来,再将连接R2和Rs的导线也自Rs上解下来,之后将前者转接到Rs上、后者转接到Rx上),将Rs调节为最接近R1Rx0/R2的数值。完成后,重新打开稳压电源输出开关,调节Rs,直到检流计指针最接近零刻度线为止,再将此时的Rs值记作为Rs′。
- 将第6步调节得到的Rs和第9步测得的Rs′ 代入式(2.3)中算出Rx测量值。
- 在电路中将Rs和Rx重新换回去。
- 将第6~11步(第7步除外)再重复进行10次,只是各次的Rs值分别取作9600、9700、9800、9900、10000、10100、10200、10300、10400、10500。这样,最终可以测得11个Rx测量值,将它们的平均值作为最终的Rx测,拿它与Rx0计算测量的百分误差。
实验获得的数据及其处理情况如下表中所示:
表3.1 大电阻情形下“原方法”获得的测量数据及其处理情况(R2 = 20000Ω)
Rs(Ω) | Rs′(Ω) | Rx(Ω) | Rx测(Ω) | Rx0(Ω) | 百分误差 | |
1 | 9500.0 | 10518.9 | 9996.5 | 9996.4 | 10000 | 0.036000% |
2 | 9600.0 | 10409.0 | 9996.3 | |||
3 | 9700.0 | 10301.9 | 9996.4 | |||
4 | 9800.0 | 10196.8 | 9996.4 | |||
5 | 9900.0 | 10093.7 | 9996.4 | |||
6 | 10000.0 | 9992.7 | 9996.3 | |||
7 | 10100.0 | 9893.8 | 9996.4 | |||
8 | 10200.0 | 9796.6 | 9996.3 | |||
9 | 10300.0 | 9701.5 | 9996.3 | |||
10 | 10400.0 | 9608.4 | 9996.4 | |||
11 | 10500.0 | 9517.1 | 9996.5 |
这里是通过改变Rs的值来获得多组数据的。数据处理之后可以看到,利用“原方法”来测量10000Ω电阻的百分误差达到了0.036%,这表明测量还是较为准确的。只是,此一误差还是超过了标准电阻原本的精度0.01%
3.2.2 小电阻的测量
当待测电阻是标称值为5Ω的小电阻时,实验步骤如下:
1~5. 见3.2.1节所述实验步骤中的第1~5步。
- 将Rs调节为4.5Ω并作记录,然后根据标准电阻Rx的标称值Rx0将R1调节为最接近R2Rx0/Rs的数值。
7~11. 见3.2.1节所述实验步骤中的第7~11步。
- 将第6~11步(第7步除外)再重复进行10次,只是各次的Rs值分别取作4.6、4.7、4.8、4.9、5.0、5.1、5.2、5.3、5.4、5.5。这样,最终可以测得11个Rx测量值,将它们的平均值作为最终的Rx测,拿它与Rx0计算测量的百分误差。
实验获得的数据及其处理情况列为下表:
表3.2 小电阻情形下“原方法”获得的测量数据及其处理情况(R2 = 20000Ω)
Rs(Ω) | Rs′(Ω) | Rx(Ω) | Rx测(Ω) | Rx0(Ω) | 百分误差 | |
1 | 4.5 | 5.5 | 4.975 | 4.972 | 5 | 0.5600% |
2 | 4.6 | 5.4 | 4.984 | |||
3 | 4.7 | 5.3 | 4.991 | |||
4 | 4.8 | 5.1 | 4.948 | |||
5 | 4.9 | 5.0 | 4.950 | |||
6 | 5.0 | 4.9 | 4.950 | |||
7 | 5.1 | 4.8 | 4.948 | |||
8 | 5.2 | 4.8 | 4.996 | |||
9 | 5.3 | 4.7 | 4.991 | |||
10 | 5.4 | 4.6 | 4.984 | |||
11 | 5.5 | 4.5 | 4.975 |
由表3.2中的数据处理结果可以看到,对于标称值为5Ω的小电阻,测量误差取为0.56%,相对于前述大电阻情形有明显的增加,也显著超过了电阻原本的精度0.01%。造成这样的结果自然与前文分析所认为的该测量方法仅适用于待测电阻与比较电阻都较大情形(见前文式(2.4)下方的讨论)此一结论有关了。
3.3 “新方法一”下的实验
前文2.2节在将比较臂和测量臂中存在的额外电阻纳入考虑后提出了一种新的利用惠斯登电桥来测量电阻的方法。此方法下的电路结构与图3.2完全相同,不再重复。
3.3.1 大电阻的测量
取标称值为10000Ω的标准电阻来充当待测电阻,实验步骤为:
1~7. 见3.2.1节所述实验步骤中的第1~7步。
- 调节R1,直到检流计指针最接近零刻度线为止。记录下此时的R1值,再将比值R1/R2记录为k0。
- 关闭稳压电源上的输出开关,然后交换Rs和Rx(具体做法见3.2.1节所述实验步骤中的第9步),将Rs调节为最接近k0Rx0的数值。完成后,重新打开稳压电源输出开关,调节Rs,直到检流计指针最接近零刻度线为止,再将此时的Rs值记作为Rs′。
- 将第8步记录的k0值,以及第6步调节得到的Rs和第9步测得的Rs′ 皆代入式(2.8)中算出Rx测量值。
- 在电路中将Rs和Rx重新换回去。
- 将第6~11步(第7步除外)再重复进行10次,只是各次的Rs值分别取作9600、9700、9800、9900、10000、10100、10200、10300、10400、10500。这样,最终可以测得11个Rx测量值,将它们的平均值作为最终的Rx测,拿它与Rx0计算测量的百分误差。
经以上步骤测得的数据及其处理情况列于下表中:
表3.3 大电阻情形下“新方法一”获得的测量数据及其处理情况(R2 = 20000Ω)
R1(Ω) | k0 | Rs(Ω) | Rs′(Ω) | Rx(Ω) | Rx测(Ω) | Rx0(Ω) | 百分误差 | |
1 | 21047.6 | 1.05238 | 9500.0 | 10519.6 | 9996.8 | 9996.6 | 10000 | 0.034000% |
2 | 20829.0 | 1.04145 | 9600.0 | 10409.5 | 9996.5 | |||
3 | 20614.1 | 1.03071 | 9700.0 | 10302.2 | 9996.5 | |||
4 | 20403.7 | 1.02019 | 9800.0 | 10197.2 | 9996.6 | |||
5 | 20197.7 | 1.00989 | 9900.0 | 10094.1 | 9996.6 | |||
6 | 19987.7 | 0.999385 | 10000.0 | 9993.0 | 9996.5 | |||
7 | 19790.1 | 0.989505 | 10100.0 | 9894.2 | 9996.6 | |||
8 | 19595.7 | 0.979785 | 10200.0 | 9797.2 | 9996.5 | |||
9 | 19406.1 | 0.970305 | 10300.0 | 9702.3 | 9996.6 | |||
10 | 19219.1 | 0.960955 | 10400.0 | 9608.7 | 9996.5 | |||
11 | 19035.7 | 0.951785 | 10500.0 | 9517.4 | 9996.6 |
表3.3中的数据处理结果表明,式(2.8)所代表的新测量方法在测量标称值达到10000Ω的较大电阻时误差可为0.034%,高于待测电阻本身的精度0.010%。
3.3.2 小电阻的测量
取标称值为5Ω的标准电阻为待测电阻,实验步骤可叙述为:
1~5. 见3.2.1节所述实验步骤中的第1~5步。
- 将Rs调节为4.5Ω并作记录,然后根据标准电阻Rx的标称值Rx0将R1调节为最接近R2Rx0/Rs的数值。
- 打开稳压电源,摁下输出开关,然后在CH1通道下顺时针转动电流调节旋钮直到其右侧的绿灯亮起来为止。之后,再顺时针转动电压调节旋钮,直至输出电压值达到最大值31.6V为止。
8~11. 见3.3.1节所述实验步骤中的第8~11步。
- 将第6~11步(第7步除外)再重复进行10次,只是各次的Rs值分别取作4.6、4.7、4.8、4.9、5.0、5.1、5.2、5.3、5.4、5.5。这样,最终可以测得11个Rx测量值,将它们的平均值作为最终的Rx测,拿它与Rx0计算测量的百分误差。
实验获得的数据以及对它的处理情况列于下表中:
表3.4 小电阻情形下“新方法一”获得的测量数据及其处理情况(R2 = 20000Ω)
R1(Ω) | k0 | Rs(Ω) | Rs′(Ω) | Rx(Ω) | Rx测(Ω) | Rx0(Ω) | 百分误差 | |
1 | 22085.1 | 1.10426 | 4.5 | 5.5 | 4.975 | 4.976 | 5 | 0.4800% |
2 | 21637.9 | 1.08190 | 4.6 | 5.4 | 4.984 | |||
3 | 21180.9 | 1.05905 | 4.7 | 5.3 | 4.991 | |||
4 | 20736.9 | 1.03685 | 4.8 | 5.2 | 4.996 | |||
5 | 20305.4 | 1.01527 | 4.9 | 5.0 | 4.950 | |||
6 | 19914.3 | 0.995715 | 5.0 | 4.9 | 4.950 | |||
7 | 19522.0 | 0.976100 | 5.1 | 4.8 | 4.948 | |||
8 | 19169.6 | 0.958480 | 5.2 | 4.8 | 4.996 | |||
9 | 18797.7 | 0.939885 | 5.3 | 4.7 | 4.991 | |||
10 | 18453.1 | 0.922655 | 5.4 | 4.6 | 4.984 | |||
11 | 18123.8 | 0.906190 | 5.5 | 4.5 | 4.975 |
表3.4的处理结果表明,当测量的是阻值为5Ω的小电阻时,测量误差可以达到0.48%,这比电阻本身的精度0.01%高许多。
3.4 “新方法二”下的实验
前文2.3节在将惠斯登电桥四个桥臂上的额外电阻都纳入考虑的情况下,提出了一种理论上来讲适用于测量任意电阻的方法。该方法中所用的电路图如下图所示:
图3.3 “新方法二”下的电阻测量电路 |
R1 |
R2 |
直流稳压电源 |
直流检流计 |
Rs |
Rx |
RA |
RB |
3.4.1 大电阻的测量
这里充当待测电阻的是标称值为10000Ω的标准电阻,实验步骤如下:
1~4. 见3.2.1节所述实验步骤中的第1~4步。
- 用一根导线将Rx的另一端连接到电阻箱A(称之为RA)的99999.9端子上,之后再用另一根导线将Rs的99999.9端子连接到电阻箱B(称之为RB)的99999.9端子上。然后,将RA和RB的公共端各用一根导线连接到稳压电源的CH1通道的负极输出端上。
- 将R1和R2皆调节为20000Ω,再将RA和RB的各调节旋钮皆转动到零刻度处。
- 将Rs调节为9500Ω,并将此数值记录为Rs。
- 见3.2.1节所述实验步骤中的第7步。
- 调节RA与RB,直到检流计指针最接近零刻度线为止。
- 关闭稳压电源上的输出开关,然后交换Rs和Rx,将Rs调节为(2Rx0 – Rs)(式中的“Rs”指第7步中记录下来的Rs值)。之后,重新打开稳压电源输出开关,再次调节Rs,直到检流计指针最接近零刻度线为止,再将此时的Rs值记作为Rs′。至此,就得到了一组(Rs, Rs′ )。
- 在电路中将Rs和Rx重新交换回来。
- 将第7~11步(第8步除外)再重复进行10次,只是各次第7步中的Rs值要依次调节为9600、9700、9800、9900、10000、10100、10200、10300、10400、10500等值,而第9步中的RA值则要依次调节为100、200、300、400、500、600、700、800、900、1000等值(注意:每次到第9步时都要先将RA调节为上述列出的相应的数值,之后再来真正执行第9步)。这样最终可测得11组(Rs, Rs′ )。
- 利用式(2.13)和式(2.14)处理数据获得一组k和Rx。
- 重复第6~13步10次,共获得十一组k和Rx。计算Rx的平均值,将之作为Rx测,之后用Rx测与标准电阻的标称值Rx0计算测量的百分误差。
利用以上实验步骤,我们重复进行了11次实验,各次实验所得数据如下表所示:
表3.5 大电阻情形下“新方法二”获得的测量数据(R1 = 20000Ω,R2 = 20000Ω)
对表中数据利用式(2.13)和式(2.14)处理后所得结果如下表所示:
表3.6 大电阻情形下“新方法二”对测量数据的处理情况(R1 = 20000Ω,R2 = 20000Ω)
由表3.6所示的处理结果来看,待测电阻较大时“新方法二”的测量误差可以小到0.024%。虽然仍旧显著大于电阻标称精度0.01%,但是也还算较为精确的了。
3.4.2 小电阻的测量
标称值为5Ω的标准电阻是这里的待测电阻,测量步骤如下所述:
1~4. 见3.2节所述实验步骤中的第1~4步。
- 见3.4.1节第5步。
- 将R1和R2皆调节为20000Ω,再将RA和RB的各调节旋钮皆转动到零刻度处。
- 将Rs调节为4.5Ω,并将此数值记录为Rs。
- 见3.2节所述实验步骤中的第7步。
- 调节RA与RB,直到检流计指针最接近零刻度线为止。
- 关闭稳压电源上的输出开关,然后交换Rs和Rx,将Rs调节为5Ω。之后,重新打开稳压电源输出开关,再次调节Rs,直到检流计指针最接近零刻度线为止,再将此时的Rs值记作为Rs′。至此,就得到了一组(Rs, Rs′ )。
- 在电路中将Rs和Rx重新交换回来。
- 将第7~11步(第8步除外)再重复进行10次,只是各次第7步中的Rs值要依次调节为4.6、4.7、4.8、4.9、5.0、5.1、5.2、5.3、5.4、5.5等值,而第9步中的RA值则要依次调节为1、2、3、4、5、6、7、8、9、10等值(注意:每次到第9步时都要先将RA调节为上述列出的相应的数值,之后再来真正执行第9步)。这样最终可测得11组(Rs, Rs′ )。
13~14. 见3.4.1节所述实验步骤第13~14步。
重复执行以上实验步骤11次,所得数据示于下表中:
表3.7 小电阻情形下“新方法二”获得的测量数据(R1 = 20000Ω,R2 = 20000Ω)
对表3.7中的数据利用式(2.13)和式(2.14)处理后所得结果如下表所示:
表3.8 小电阻情形下“新方法二”对测量数据的处理情况(R1 = 20000Ω,R2 = 20000Ω)
k | Rx(Ω) | Rx测(Ω) | Rx0(Ω) | 百分误差 | |
一 | 1.100 | 4.991 | 4.996 | 5 | 0.08000% |
二 | 1.100 | 4.991 | |||
三 | 1.000 | 5.000 | |||
四 | 1.100 | 4.991 | |||
五 | 1.050 | 4.996 | |||
六 | 1.050 | 4.996 | |||
七 | 1.000 | 5.000 | |||
八 | 1.000 | 5.000 | |||
九 | 1.000 | 5.000 | |||
十 | 1.000 | 5.000 | |||
十一 | 1.050 | 4.996 |
处理结果表明,利用“新方法二”测量小电阻可以实现低至0.08%的测量误差,这已经算是较为接近电阻本身的精度0.01%了。
3.5 各方法之间的比较
当待测电阻是标称值为10000Ω的标准电阻时,“原方法”、“新方法一”和“新方法二”三种方法下实验测量结果可由表3.1、表3.3和表3.6总结为:
表3.9 三种方法测量大电阻所得实验结果
Rx测(Ω) | Rx0(Ω) | 百分误差 | 标准差 | |
原方法 | 9996.4 | 10000 | 0.036000% | 0.073855 |
新方法一 | 9996.6 | 0.034000% | 0.090453 | |
新方法二 | 9997.6 | 0.024000% | 0.42853 |
由表3.9容易看出,“新方法一”与“原方法”的测量误差相当,而“新方法二”的测量误差却显著低于前两法。只是需要注意的是,“新方法二”下的标准差远大于其它两法,表明其各次测量结果彼此之间较为分散。综合来看,与其它两法相比,“新方法二”具有准确度高、精密度低的特点。因此,若用“新方法二”来测量大电阻,那么最好采取多次测量再取均值的做法。
对于标称值为5Ω的待测电阻,由表3.2、表3.4、表3.8可知,三种方法下的实验测量结果为:
表3.10 三种方法测量小电阻所得实验结果
Rx测(Ω) | Rx0(Ω) | 百分误差 | 标准差 | |
原方法 | 4.972 | 5 | 0.5600% | 0.0184 |
新方法一 | 4.976 | 0.4800% | 0.01788 | |
新方法二 | 4.996 | 0.08000% | 0.003754 |
表3.10中的结果表明,在测量小电阻时,“新方法一”的测量误差要小于“原方法”,但两者标准差大致相当;“新方法二”的测量误差和标准差则都要显著低于其它两法。综合来看,相较其它两法,“新方法二”有着明显优越得多的精确度。
结合上述大电阻与小电阻两种情形下的实验结果可以发现,“新方法一”和“新方法二”在测量小电阻时皆优于“原方法”。由第2章相关实验理论的叙述可知,“新方法一”实质上仅是采用的数据处理方法与“原方法”不同,其它诸如电路结构、电路连线情况以及测量步骤等都是完全相同的。因此,将“原方法”改为“新方法一”不会增加任何实验难度。与之不同,“新方法二”虽然在测量小电阻时展现出优良得多的精确度,可以在很大程度上避开电路中存在的各种额外电阻的影响,但是它需要更复杂的电路结构,测量步骤与数据处理也要更为繁琐、费时。
最后需要指出的是,实验表明在“新方法二”下若比较臂R1和R2所取的值不相等,那么无论待测电阻是大是小,实验的测量误差都会非常大。
利用惠斯登电桥的平衡状态可以实现精确测量电阻的目的。但是当前常用的惠斯登电桥测电阻方法(本文称之为“原方法”)因导线电阻、接触电阻等额外电阻所带来的误差的影响,所以一般认为并不适用于测量小电阻。为了解决上述问题,本文提出了两种新的测量方法——“新方法一”和“新方法二”。本文先是详细给出了此两种新方法的实验原理,推出了实验测量公式,然后给出了用它们进行测量的电路图,设计了详细的测量步骤。之后,分别运用“原方法”、“新方法一”和“新方法二”对标称值为5Ω和10000Ω的两个标准电阻进行了测量,并对所得数据进行了处理。分析数据处理结果发现,测量大电阻时“新方法一”的测量精确度与“原方法”大致相当,而相较之下,“新方法二”则具有显著优越的 准确度和低得多的精密度;测量小电阻时“新方法一”在测量精确度上略优于“原方法”,而“新方法二”则要比该两种方法优越得多。此外,实验过程中还发现,“新方法二”要求两个比较臂上的阻值应取相同值,否则会有很大的误差。
综合考虑三种方法可知,测量大电阻时可仍旧采用“原方法”来进行测量。但如果希望得到较低的测量误差,则可以选择“新方法二”,并要采取多次测量取均值的做法。测量小电阻时则应采用“新方法二”,以取得良好的测量精密度。需要指出的是,“新方法二”相较于其它两法电路结构更复杂,实验操作以及数据处理也要更为繁琐些。
[1] S. Ekelöf. The Genesis of the Wheatstone Bridge[J]. Engineering Science and Education Journal, 2001, 10(01): 37-40.
[2] 刘先慧. 用单臂电桥测量接线电阻和接触电阻[J]. 大学物理实验, 2002, 15(01): 39-40.
[3] 张明金. 对直流电桥测量小电阻的分析[J]. 中国仪器仪表, 2005(08): 114-116.
[4] 王锋, 王新春, 岳开华等. 用惠斯登电桥实验系统与SPSS标定电阻[J]. 大学物理实验, 2014, 27(03): 32-35.
[5] 姚星星, 郑远, 何亮. 自组式惠斯登电桥实验结果的不确定度分析[J]. 大学物理实验, 2019, 32(04): 100-102.
[6] 王锦辉, 贺莉蓉, 刘嘉滨等. 恒流源作为惠斯登电桥电源的灵敏度研究[J]. 大学物理实验, 2015, 28(06): 69-71.
[7] 刘凤智. 惠斯登电桥比例臂的选取[J]. 科技风, 2018(23): 210+213.
[8] 李林, 徐泽红, 吴新全. 应用非平衡电桥测量电阻实验的研究[J]. 实验技术与管理, 2007, 24(03): 31-34.
[9] 邓锂强, 朱伟玲. 把测量性实验改进为探究性实验[J]. 实验技术与管理, 2015, 32(08): 170-172+175.
[10] 何兴昌, 陈梦华, 赵子珍等. 非平衡直流电桥的原理和应用探究[J]. 广西物理, 2017, 38(Z1): 20-27.