惠斯登电桥测电阻的新方法研究
摘 要
本文提出了两种利用惠斯登电桥测量电阻的新方法,并设计、完成了相应的实验测量工作。利用所得数据的处理结果,对原有方法和两种新方法做了详细的比较。结果表明,测量大电阻时,“新方法一”与原有方法有大致相当的精确度,而“新方法二”则具有好得多的准确度,但是精密度却要差得多;测量小电阻时,“新方法一”的精确度略优于原有方法,而“新方法二”的精确度则要比上述两者好得多。总得来说,无论测量的是大电阻还是小电阻,“新方法二”都要比原有方法及“新方法一”优越,而且它在原理上很大程度排除了导线电阻、接触电阻等额外电阻的不利影响。不过,“新方法二”也有着更为复杂的电路、更繁琐的测量步骤与数据处理过程的缺点。
【关键词】惠斯登电桥 标准电阻 最小二乘法
New Methods for Measuring Resistance
with Wheatstone Bridge
Abstract
In this article, two new methods have been presented for measuring resistance with Wheatstone bridge. And the corresponding experiments have been designed and completed. By using the processing results of the experimental data, detailed comparisons have been made between the original method and two new methods. The results indicate that, when measuring large resistance, the “New Method One” has roughly equivalent exactitude to the original method,and the “New Method Two” has much better accuracy,but the precision is much worse. When measuring small resistance,the exactitude of the “New Method One” is slightly better than the original method, and the exactitude of the “New Method Two” is much better than another two methods. In general, whether the measured resistance is high or low, the “New Method Two” is superior to the original method and the “New Method One”. And it largely eliminates, in principle, the adverse effects of additional resistances like wire resistance and contact resistance. However, the “New Method Two” also has the disadvantage such as more complex circuits, more complicated measurement steps and data processing processes.
【Key words】Wheatstone Bridge Standard resistance Least square method
惠斯登电桥是一种常见的单臂直流电桥,在精密测量、各种传感装置中都有着重要的应用。当前常用的利用惠斯登电桥来测电阻的方法仅适用于测量特定范围内的电阻值,当阻值较小时会出现较大误差。本选题的主要任务是提出并验证一种新的测量方法,以实现无论待测电阻是大是小皆可精确测量的目的。通过本选题的研究,可以进一步加深对惠斯登电桥的认识,这是本选题的理论意义。而它的实际意义在于,可为精确测量电阻提供更多的选择。
1843年,惠斯登(Charles Wheatstone,1802-1875)在英国皇家学会举办的贝克尔讲座(Bakerian Lecture)上描述了他设计“差动电阻测量仪”(differential resistance measurer),这也就是今天人们所说的直流惠斯登电桥了[1]。尽管惠斯登电桥出现的如此早,但是由于它的易于实现、用途广泛,直到现在仍旧不乏相关研究。
利用惠斯登电桥测电阻时,各桥臂上的导线电阻与接触电阻是测量误差的一个重要来源,尤其当待测电阻值较小时就更是如此了。2002年,刘先惠[2]提出了一种用于测量导线电阻与接触电阻的办法,并将此方法运用到一个实例上以展示导线在接线柱上的连接状态,导线的长度及粗细都会影响到上述电阻的事实。2005年,张明金[3]为了消除被测臂上导线电阻带来的误差,在比较臂上添加了一个补偿电阻盘。其做法是,先不接入待测电阻,让被测臂上只有导线电阻,再将比较臂上的测量盘电阻调节为零,然后调节补偿电阻盘使电桥达至平衡。这样,即可将被测臂上的导线电阻消除掉。除了上述方法外,张明金还介绍了三线连接法和四端钮连接法。此两种方法本质上都是通过采用特殊的连线方式来尽可能缩短被测臂导线长度,以期削弱导线电阻所带来的影响的。
电阻测量值的不确定度标志了测量的可信度。通过分析该不确定度,有助于了解如何降低测量误差。2014年,王锋等人[4]基于电桥平衡条件推导了电阻测量值的不确定度表达式,之后对一个实例进行了测量,所得到的数据经SPSS软件处理绘制成定标曲线,再通过在该曲线上选择特定坐标点最终算得了待测电阻值及其不确定度。王锋等人认为SPSS的使用提高了测量数据及实验结果的分析精度。2019年,姚星星等人[5]为了减小系统误差采用了通过交换比较臂共完成两次测量的方法来测量待测电阻。他们推出了此测量方法下电阻测量值不确定度的表达式,在将之运用于一个实例之后指出,不确定度受电桥灵敏度影响较小,而主要受电阻箱带来的系统误差的影响。
电桥灵敏度对测量误差也有影响。一般而言,电桥灵敏度越高,对电桥是否处于平衡状态的判定就越准确,因而也就能更加精确地测量电阻值了。2015年,王锦辉等人[6]研究了以恒流源为电源时电桥灵敏度受各相关因素影响的情况。他们使用伏特表来判断电桥的平衡情况,在推得了灵敏度的表达式之后利用伏特表内阻很大的条件对表达式作了近似处理,并由之得出结论认为,灵敏度与恒流源输出电流成正比,并且比较臂电阻越大、比例系数越小,灵敏度就越高。2018年,刘凤智[7]对以稳压源为电源时的电桥灵敏度作了讨论在给出灵敏度表达式之后,将之视作为比例臂的函数,给出了灵敏度取为极大值所应满足的条件。
惠斯登电桥除了其平衡状态外,它的非平衡状态也可以用来测量电阻。2007年,李林等人[8]对非平衡电桥测电阻进行了研究。他们使用伏特表来测量电桥输出电压,利用伏特表内阻为无穷大这一近似条件,推出了电桥输出电压的一般表达式,再由之推得了等式电桥、卧式电桥和立式电桥这三种桥式下的相应输出电压公式。接着,利用电阻测量范围的相对值趋于零这个条件将上述三个桥式的公式皆近似为线性表达式,给出了此一步近似所导致的非线性误差表达式。再结合电桥灵敏度公式,李林等人得出结论认为,等式电桥(卧式电桥)有更高的灵敏度,而立式电桥则有更小的误差和更大的测量范围。2015年,邓锂强[9]推导了非平衡电桥的检流计上的电流与待测电阻的函数关系式,之后利用多个阻值已知的待测电阻测得了多组由检流计电流和待测电阻阻值构成的数据,并由它们绘制出相应定标曲线,再借助此曲线来测量未知待测电阻的阻值。2017年,何兴昌等人[10]同样对非平衡电桥进行了研究。他们除了讨论了李林等人[8]所讨论的电桥输出端处于开路状态的情形外,还讨论了在电桥输出端连接负载的情形。前一种情形被称为电压电桥,后一种则被称为功率电桥。他们利用此两种电桥对几个实例分别测量了三种桥式(即等式电桥、卧式电桥和立式电桥)下待测电阻值随温度变化的情况。分析结果后指出,功率电桥有时会比电压电桥更精确,应根据具体的电阻类型来进行选择。对于线性电阻,用近似得到的线性测量公式要更精确一些;对于非线性电阻,则应采用近似之前的非线性测量公式。此外,他们还指出等式电桥和卧式电桥有更高的灵敏度,但是立式电桥却有更大的测量范围,这与李林等人得出的结论一致。
本论文一共有三章,第1章对惠斯登电桥作了简单介绍,讨论了惠斯登电桥的两种典型应用。第2章首先简单介绍了现在被普遍采用的惠斯登电桥测电阻的测量原理,然后提出了两种同样基于惠斯登电桥的新测量方法,详细讨论了此两种新方法的原理,给出了测量公式。第3章给出了第2章中提及的原有方法和两种新方法的实验步骤,并完成了相应的实验测量工作,获得了测量数据。之后,基于对测量数据的处理结果,详细讨论了三种方法的特点,比较了它们的优劣。
1 惠斯登电桥及其应用
1.1 惠斯登电桥
A |
B |
C |
G |
R1 |
R2 |
R3 |
R4 |
D |
图1.1 典型的直流单臂桥式电路 |
Rg |
图1.1所示是最常见的直流单臂桥式电路示意图。桥式电路常被称作电桥,而直流单臂桥式电路也常被称作惠斯登电桥。此种电桥具有四个桥臂,分别就是图1.1中电阻R1、R2、R3和R4所占据的支路。而B、D间连接有检流计(其内阻设为Rg)的支路就是所谓的电桥了。
惠斯登电桥有平衡电桥和非平衡电桥两大类。简单来说,当图1.1中B、D两点有相同电势时,检流计上不会有电流通过,此时就称电桥为平衡电桥;反之,若B、D间存在电压,则称电桥为非平衡电桥。
平衡电桥实际上可看作为是由非平衡电桥在满足特定条件后所得到的。设想图1.1中的电桥是非平衡电桥,且B点电势高于D点,则A、C间各支路的电流可设为图1.2中的样子:
A |
B |
C |
G |
R1 |
R2 |
R3 |
R4 |
D |
图1.2 非平衡惠斯登电桥中的有关设定 |
Rg |
U0 |
I1 |
I2 |
Ig |
I1 − Ig |
I2 + Ig |
由图中的设定可建立下述方程组:
(1.1)
若将A、C间电压U0视为已知量,则上式实际上是关于I1、I2、Ig的三元一次方程组
(1.2)
从此式容易知道,若要图1.2中所示电桥为平衡电桥,必须满足:
(1.3)
这就是电桥平衡条件。
1.2 惠斯登电桥的应用
1.2.1 测量电阻
A |
B |
C |
G |
R1 |
R2 |
Rx |
Rs |
D |
图1.3 惠斯登电桥测电阻的常见测量电路 |
利用电桥平衡条件测电阻是电桥的重要应用之一,图1.3中展示了此种应用情形下常用的电路。图中的Rx就是待测电阻,所在桥臂被称作测量臂;R1和R2为已知电阻,所在桥臂合称比例臂;Rs是可直接读取其阻值的可变电阻,一般称之为比较电阻,所在桥臂相应地被称为比较臂。整个测量过程可简述为,改变Rs的值直到检流计读数等于零时为止。此时电桥平衡,利用式(1.3)即可得:
(1.4)
将Rs读取出来之后代入上式即可得待测电阻的阻值。
1.2.2 测量弱磁场
A |
B |
C |
U |
R(B) |
R0 |
R0 |
R(B) |
D |
图1.4 惠斯登电桥测磁场的测量电路 |
U0 |
非平衡电桥也有重要应用,比如图1.4所示的测量弱磁场。如图中所示,电桥的四个桥臂中有两个上面的电阻皆为R0,剩下的两个桥臂上则是用巨磁阻材料制成的电阻,它们的阻值是外加磁场的函数记作R(B)。若设A、C两点间的电压为U0,则容易得B、D间电压U可表示为:
(1.5)
此外,电压U与外加磁场的磁感应强度大小B还满足关系:
(1.6)
式中的γ是灵敏度。利用以上两式就可以实现对弱磁场的测量,测量方法如下:首先将电路暴露于已知磁场下,通过改变磁场的B值来测得多组由B和U构成的实验数据;之后再利用这些数据,由式(1.6)通过最小二乘法算得γ值;然后,再将电路置于待测磁场中,测得U值后再利用式(1.6)得到待测磁场的磁感应强度大小。
2 惠斯登电桥测电阻的新方法
2.1 现有的方法
前文中给出了惠斯登电桥测电阻的原理,所基于的公式是式(1.4)。由此式可知,只要得到电桥达到平衡时的Rs值,就可算得待测电阻Rx了。只是可惜的是,这种做法只在理论上有较高的精确度,实际当中并不可取。原因在于,电阻R1和R2所在的支路中还存在其它电阻,主要是导线电阻以及接线处的接触电阻。若将该两条支路中的上述额外电阻分别记作ΔR1和ΔR2,则测量公式也就应该改写作:
(2.1)
由于式中的ΔR1和ΔR2都是未知值,因此根据此式并不能直接测出Rx来。为了解决这个问题,一般的做法是,对于给定的待测电阻,先作第一次测量,记录下电桥达到平衡时的比较电阻值,记作Rs。之后,交换待测电阻和比较电阻,做第二次测量,将电桥重新平衡时的比较电阻值记录为Rs′。第一次测量,有式(2.1)成立。对于第二次测量,因两个桥臂上电阻发生了相互交换,此时据式(1.3)可有:
注意,等号左边依然要考虑比较臂上实际存在的额外电阻。由此式即可得:
(2.2)
令式(2.1)和式(2.2)相乘即可得:
(2.3)
此式就是目前常用的测量公式。
2.2 适用于测量小电阻的新方法
上述方法中,只是考虑了两个比较臂存在额外电阻的问题,对于测量臂和比较臂上同样存在的额外电阻完全没有涉及,这显然是不妥当的。若设测量臂与比较臂上因导线电阻和接触电阻而引入的额外电阻分别为ΔRx和ΔRs,则在考虑各桥臂此类额外电阻后,图1.3中的电路图应矫正为下图中的样子:
A |
B |
C |
G |
R1 |
R2 |
Rx |
Rs |
D |
图2.1 考虑各桥臂上的额外电阻时的测量电路 |
ΔR1 |
ΔR2 |
ΔRx |
ΔRs |
容易得出图2.1中所示电桥的平衡条件为:
(2.4)
若Rx、Rs都比较大,就可以近似将上式等号左侧分式中的ΔRx和ΔRs忽略掉,此时式(2.4)就会化作式(2.1)。这意味着,前述的现有测量方法仅适用于Rx、Rs都比较大的情况。
针对Rx比较小的情形,我们提出下述新做法来处理。具体说来,就是将R1和R2选为比较大的值,此时式(2.4)等号右侧分式中的ΔR1和ΔR2皆可忽略,于是式(2.4)就会变作:
(2.5)
式中
(2.6)
与此同时,图2.1也应变为:
A |
B |
C |
G |
R1 |
R2 |
Rx |
Rs |
D |
图2.2 只考虑测量臂和比较臂上的额外电阻时的测量电路 |
ΔRx |
ΔRs |
在上述做法下,应按如下方式来作实验,即在图2.2所示的电路中,调节比较电阻使电桥平衡,将此时的比较电阻值记录为Rs,它和待测电阻满足式(2.5),这是第一次测量。然后,将图中的待测电阻与比较电阻互换,作第二次测量,即再一次调节比较电阻直到电桥平衡为止,将此时的比较电阻记录为Rs′。由于额外电阻源自于线路和接线点,与待测电阻、比较电阻无关,所以待测电阻和比较电阻互换不会改变ΔRx和ΔRs因此,上述第二次测量获得的Rs′ 必然满足:
(2.7)
联立式(2.5)和式(2.7)可以计算得: