带你手撸扩散模型:DDPM原理及PyTorch代码实现
作者:禅与计算机程序设计艺术
1. 背景介绍
近年来,深度学习技术在图像生成领域取得了显著的进展,其中以扩散模型(Diffusion Models)最为突出。扩散模型的核心思想是通过逐步添加高斯噪声,将真实图像转换为噪声图像,然后学习逆转这个过程,从噪声中恢复出原始图像。这种方法在图像生成、图像修复、图像超分辨率等任务中都展现出了强大的能力。
1.1 扩散模型的起源与发展
扩散模型的灵感来源于非平衡态热力学。2015年,Sohl-Dickstein等人首次提出了扩散概率模型的概念,并将其应用于图像生成任务。此后,Ho等人提出了变分推断方法来训练扩散模型,使得模型的训练更加高效。近年来,随着深度学习技术的不断发展,扩散模型也得到了进一步的改进和优化,涌现出了一些性能优异的模型,例如DDPM、Improved DDPM、NCSN等。
1.2 扩散模型的优势与应用
相比于其他图像生成模型,扩散模型具有以下优势:
- 生成图像质量高: 扩散模型能够生成高质量、高分辨率的图像,并且可以捕捉到图像的细节信息。

订阅专栏 解锁全文
2377

被折叠的 条评论
为什么被折叠?



