基础模型、大规模语言模型、深度学习、迁移学习、泛化能力、可解释性、效率、安全
1. 背景介绍
近年来,深度学习技术取得了飞速发展,基础模型(Foundation Models)作为其重要组成部分,展现出强大的学习能力和泛化能力,在自然语言处理、计算机视觉、语音识别等领域取得了突破性进展。基础模型通常是指在海量数据上预训练的大规模模型,能够在多种下游任务中进行微调,实现高效的跨任务学习。
然而,基础模型的训练和应用也面临着诸多技术挑战:
- 数据规模和质量: 基础模型的训练需要海量高质量数据,而获取和处理如此庞大的数据资源是一个巨大的挑战。
- 计算资源和成本: 基础模型的训练需要消耗大量的计算资源,这导致训练成本高昂,难以普及。
- 模型规模和复杂度: 基础模型往往具有庞大的参数规模和复杂的架构,这使得模型训练和部署更加困难。
- 泛化能力和鲁棒性: 基础模型在面对新的任务或数据分布时,其泛化能力和鲁棒性仍然存在不足。
- 可解释性和安全性: 基础模型的决策过程往往难以解释,其潜在的安全风险也需要得到重视。