知识蒸馏,对抗学习,模型鲁棒性,迁移学习,安全机器学习
1. 背景介绍
在机器学习领域,模型的鲁棒性一直是研究的热点问题。对抗攻击是指通过对输入数据进行微小的扰动,从而导致模型输出错误的攻击方式。对抗攻击的出现对机器学习模型的安全性和可靠性提出了严峻挑战。
知识蒸馏是一种迁移学习技术,它通过将知识从一个大型模型(教师模型)转移到一个小型模型(学生模型)中,从而提高学生模型的性能和效率。近年来,知识蒸馏在图像分类、自然语言处理等领域取得了显著的成果。
结合对抗学习和知识蒸馏,可以构建更鲁棒的机器学习模型。对抗学习旨在训练模型对对抗攻击具有抵抗能力。通过知识蒸馏,可以将对抗训练过程中获得的对抗鲁棒性知识转移到更轻量级的模型中,从而提高模型的泛化能力和鲁棒性。
2. 核心概念与联系
2.1 知识蒸馏
知识蒸馏是一种迁移学习技术,它通过将知识从一个大型模型(教师模型)转移到一个小型模型(学生模型)中,从而提高学生模型的性能和效率。
知识蒸馏的核心思想是,教师模型不仅要输出正确的预测结果,还要输出对预测结果的置信度信息。学生模型则通过学习教师模型的预测结果和置信度信息&#x