基础模型、安全、鲁棒性、对抗攻击、数据中毒、模型可解释性、防御机制
1. 背景介绍
近年来,基础模型(Foundation Models)在人工智能领域取得了令人瞩目的成就。这些模型通常拥有庞大的参数规模和广泛的知识储备,能够在各种下游任务中表现出色,例如自然语言处理、计算机视觉和代码生成。然而,基础模型的强大能力也带来了新的安全和鲁棒性挑战。
基础模型的训练数据通常来自互联网,可能包含噪声、偏见和恶意数据。这些问题可能会导致模型产生不准确、不公平甚至有害的输出。此外,攻击者可以利用模型的结构和训练数据设计对抗攻击,以欺骗模型并使其产生错误的预测。
2. 核心概念与联系
2.1 基础模型
基础模型是指具有广泛适用性的深度学习模型,其训练数据量大、参数规模庞大,能够在多个下游任务中进行微调。例如,GPT-3、BERT、DALL-E 等都是基础模型的代表。
2.2 安全与鲁棒性
- 安全是指模型能够抵抗恶意攻击,并确保其输出符合预期。
- 鲁棒性是指模型能够在面对噪声、异常数据或环境变化时仍然保持稳定和准确的性能。
2.3 攻击类型</