人工智能、大语言模型、强化学习、神经网络、迁移学习
1. 背景介绍
人工智能(AI)近年来发展迅速,已成为科技领域最热门的话题之一。传统的人工智能系统通常基于规则或统计模型,而深度学习的兴起则为人工智能带来了革命性的变革。深度学习算法能够从海量数据中自动学习特征,从而实现更精准、更智能的决策。
目前,人工智能领域广泛应用着三种核心技术,被称为“AI三驾马车”:
- 机器学习(Machine Learning,ML):通过算法训练模型,使模型能够从数据中学习并做出预测。
- 深度学习(Deep Learning,DL):一种更高级的机器学习方法,利用多层神经网络模拟人类大脑的学习过程。
- 强化学习(Reinforcement Learning,RL):通过奖励机制训练模型,使其在环境中学习最优策略。
这三种技术相互补充,共同推动着人工智能的发展。然而,随着技术的不断进步,新的挑战也随之而来。例如,现有的AI三驾马车在处理复杂、多模态数据方面仍然存在局限性,并且缺乏对真实世界环境