音乐推荐系统,LLM,自然语言处理,个性化推荐,深度学习,Transformer模型
1. 背景介绍
音乐作为一种重要的文化艺术形式,在人们的生活中扮演着越来越重要的角色。随着数字音乐平台的兴起,用户可以轻松获取海量的音乐资源。然而,面对如此庞大的音乐库,用户往往难以找到自己真正喜欢的音乐。因此,智能音乐推荐系统应运而生,旨在根据用户的喜好和行为,推荐个性化的音乐内容。
传统的音乐推荐系统主要依赖于协同过滤和内容过滤等方法,这些方法虽然有一定的效果,但存在一些局限性。协同过滤方法需要大量的用户行为数据,而内容过滤方法难以捕捉用户隐性的音乐偏好。近年来,随着深度学习技术的快速发展,基于深度学习的音乐推荐系统逐渐成为研究热点。
2. 核心概念与联系
2.1 LLM(大型语言模型)
LLM是一种基于Transformer模型的深度学习模型,能够理解和生成人类语言。它通过训练海量的文本数据,学习语言的语法、语义和上下文关系。LLM在自然语言处理领域取得了突破性的进展,例如文本生成、机器翻译、问答系统等。
2.2 个性化音乐推荐
个性化音乐推荐是指根据用户的音乐偏