AI 大模型在电商搜索推荐中的冷启动策略:应对数据不足与新用户挑战
1. 背景介绍
1.1 问题由来
在电商搜索推荐系统中,冷启动问题是一个常见且重要的挑战。冷启动问题通常出现在新用户或新商品时,系统没有足够的历史行为数据来推荐相关商品。传统的推荐系统主要依赖用户行为数据来生成推荐,但在面对新用户或新商品时,这些系统往往难以发挥作用,导致推荐效果不佳。
1.2 问题核心关键点
冷启动问题本质上是数据不足和模型缺乏训练问题。在缺乏用户历史行为数据的情况下,如何利用大模型的强大表征能力,对新用户和新商品进行有效推荐,是电商推荐系统面临的主要挑战。冷启动策略的有效性直接关系到系统的用户留存率、转化率和市场竞争力。
2. 核心概念与联系
2.1 核心概念概述
为更好地理解如何通过大模型应对电商搜索推荐中的冷启动问题,本节将介绍几个关键概念及其之间的联系。
- 电商搜索推荐系统:利用用户行为数据和商品属性信息,为用户推荐可能感兴趣的商品的系统。
- 大模型:基于大规模数据和复杂网络结构训练而成的模型,如BE