AI 大模型在电商搜索推荐中的用户行为分析:理解用户需求与购买偏好
关键词:电商搜索推荐、用户行为分析、购买偏好、自然语言处理(NLP)、深度学习、协同过滤、知识图谱、多模态特征融合
1. 背景介绍
1.1 问题由来
在当前快速发展的电商行业,消费者需求日益多样化和个性化,如何准确理解用户需求,并提供个性化推荐,成为了电商平台的核心挑战。传统推荐系统主要依赖基于用户行为数据的协同过滤、基于内容的推荐等技术,但在处理新用户数据、长尾商品推荐等方面效果有限。
大语言模型(如BERT、GPT等)的崛起,使得电商推荐系统能够利用自然语言处理技术,更全面地分析用户行为,挖掘出深层次的需求和偏好,从而提供更加精准、个性化的商品推荐。
1.2 问题核心关键点
大语言模型在电商推荐中的应用,主要依赖于用户评论、商品描述、搜索关键词等多源数据,通过自然语言理解与生成能力,抽取用户需求和商品属性信息,构建用户行为和商品特征的语义表示,再结合协同过滤等推荐算法,形成个性化的推荐结果。
具体来说,主要有以下核心关键点:
- 用户评论和商品