为了实现基于STM32的简单语音识别,我们可以采用一种常见的方法,即使用MFCC(Mel频率倒谱系数)算法对语音信号进行特征提取,然后使用分类器对这些特征进行分类。
本文将介绍如何在STM32上实现这一过程,包括语音采集、MFCC特征提取和分类器。以下是我们要完成的步骤:
- 配置ADC(模数转换器)以捕获声音信号;
- 对声音信号进行预处理,包括预加重和分帧;
- 对每个帧进行傅里叶变换,然后计算MFCC系数;
- 使用分类器对MFCC系数进行分类。
让我们逐步进行详细的代码实现。
1. 配置ADC
首先,我们需要配置STM32的ADC模块以捕获声音信号。在这里,我们将使用单通道、连续转换模式和DMA(直接存储器存取)来提高效率。
#include "stm32f4xx.h"
void ADC_Configuration(void)
{
ADC_InitTypeDef ADC_InitStructure;
ADC_CommonInitTypeDef ADC_CommonInitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
// 使能ADC