使用STM32实现简单的语音识别

为了实现基于STM32的简单语音识别,我们可以采用一种常见的方法,即使用MFCC(Mel频率倒谱系数)算法对语音信号进行特征提取,然后使用分类器对这些特征进行分类。

本文将介绍如何在STM32上实现这一过程,包括语音采集、MFCC特征提取和分类器。以下是我们要完成的步骤:

  1. 配置ADC(模数转换器)以捕获声音信号;
  2. 对声音信号进行预处理,包括预加重和分帧;
  3. 对每个帧进行傅里叶变换,然后计算MFCC系数;
  4. 使用分类器对MFCC系数进行分类。

让我们逐步进行详细的代码实现。

1. 配置ADC

首先,我们需要配置STM32的ADC模块以捕获声音信号。在这里,我们将使用单通道、连续转换模式和DMA(直接存储器存取)来提高效率。

#include "stm32f4xx.h"

void ADC_Configuration(void)
{
    ADC_InitTypeDef ADC_InitStructure;
    ADC_CommonInitTypeDef ADC_CommonInitStructure;
    GPIO_InitTypeDef GPIO_InitStructure;
    DMA_InitTypeDef DMA_InitStructure;

    // 使能ADC
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值