本地部署大模型?看这篇就够了,Ollama 部署和实战

写在前面

有小伙伴问,如果我想在本地搞个大模型玩玩,有什么解决方案?

Ollama,它来了,专为在本地机器便捷部署和运行大模型而设计。

也许是目前最便捷的大模型部署和运行工具,配合Open WebUI,人人都可以拥有大模型自由。

今天,就带着大家实操一番,从 0 到 1 玩转 Ollama。

1. 部署

1.1 Mac & Windows

相对简单,根据你电脑的不同操作系统,下载对应的客户端软件,并安装:

  • macOS:https://ollama.com/download/Ollama-darwin.zip

  • Windows:https://ollama.com/download/OllamaSetup.exe

1.2 Linux

推荐大家使用 Linux 服务器进行部署,毕竟大模型的对机器配置还是有一定要求。

裸机部署

step 1: 下载 & 安装

命令行一键下载和安装:

curl -fsSL https://ollama.com/install.sh | sh   

如果没有报错,它会提示你 ollama 的默认配置文件地址:

Created symlink /etc/systemd/system/default.target.wants/ollama.service → /etc/systemd/system/ollama.service.   

接下来,我们采用如下命令查看下服务状态, running 就没问题了:

systemctl status ollama   

查看是否安装成功,出现版本号说明安装成功:

ollama -v   

step 2: 服务启动

浏览器中打开:http://your_ip:11434/,如果出现 Ollama is running,说明服务已经成功运行。

step 3: 修改配置(可选) 如果有个性化需求,需要修改默认配置:

配置文件在:/etc/systemd/system/ollama.service,采用任意编辑器打开,推荐 vim

  1. 默认只能本地访问,如果需要局域网内其他机器也能访问(比如嵌入式设别要访问本地电脑),需要对 HOST 进行配置,开启监听任何来源IP
[Service]   Environment="OLLAMA_HOST=0.0.0.0"   
  1. 如果需要更改模型存放位置,方便管理,需要对 OLLAMA_MODELS 进行配置:
[Service]   Environment="OLLAMA_MODELS=/data/ollama/models"   

不同操作系统,模型默认存放在:

macOS: ~/.ollama/models
Linux: /usr/share/ollama/.ollama/models
Windows: C:\Users\xxx\.ollama\models
  1. 如果有多张 GPU,可以对 CUDA_VISIBLE_DEVICES 配置,指定运行的 GPU,默认使用多卡。
Environment="CUDA_VISIBLE_DEVICES=0,1"   

4.配置修改后,需要重启 ollama

systemctl daemon-reload
systemctl restart ollama

注意:上面两条指令通常需要同时使用:只要你修改了任意服务的配置文件(如 .service 文件),都需要运行systemctl daemon-reload使更改生效。

Docker 部署

我们也介绍下 Docker 部署,无需配置各种环境,相对小白来说,更加友好。

step 1: 一键安装

如果是一台没有 GPU 的轻量级服务器:

docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama --restart always ollama/ollama   

简单介绍下这个命令的参数:

  • docker run:用于创建并启动一个新的 Docker 容器。

  • -d:表示以分离模式(后台)运行容器。

  • -v ollama:/root/.ollama:将宿主机上的 ollama 目录挂载到容器内的 /root/.ollama 目录,便于数据持久化。

  • -p 11434:11434:将宿主机的 11434 端口映射到容器的 11434 端口,使外部可以访问容器服务。

  • –name ollama:为新创建的容器指定一个名称为 ollama,便于后续管理。

  • –restart always:容器在退出时自动重启,无论是因为错误还是手动停止。

  • ollama/ollama:指定要使用的 Docker 镜像,这里是 ollama 镜像。

宿主机上的数据卷 volume 通常在 /var/lib/docker/volumes/,可以采用如下命令进行查看:

[root@instance-20240702-1632 ~]# docker volume ls
DRIVER    VOLUME NAME
local     dockers_postgres-data
local     ollama
local     open-webui
[root@instance-20240702-1632 ~]# ls /var/lib/docker/volumes/
backingFsBlockDev  dockers_postgres-data  metadata.db  ollama  open-webui

如果拥有 Nvidia-GPU:

docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama   

安装成功后,注意要给服务器打开 11434 端口的防火墙,然后浏览器打开 http://your_ip:11434/,如果出现 Ollama is running,说明服务已经成功运行。

step 2: 进入容器

如何进入容器中执行指令呢?

docker exec -it ollama /bin/bash   

参数说明:

  • exec:在运行中的容器中执行命令。

  • -it:表示以交互模式运行,并分配一个伪终端。

  • ollama:容器的名称。

  • /bin/bash:要执行的命令,这里是打开一个 Bash shell。

执行后,你将进入容器的命令行,和你本地机器上使用没有任何区别。

如果不想进入容器,当然也可以参考如下指令,一键运行容器中的模型:

docker exec -it ollama ollama run qwen2:0.5b   

如果一段时间内没有请求,模型会自动下线。

2. 使用

2.1 Ollama 常用命令

Ollama 都有哪些指令?

终端输入 ollama

Usage:
  ollama [flags]
  ollama [command]

Available Commands:
  serve       Start ollama
  create      Create a model from a Modelfile
  show        Show information for a model
  run         Run a model
  pull        Pull a model from a registry
  push        Push a model to a registry
  list        List models
  ps          List running models
  cp          Copy a model
  rm          Remove a model
  help        Help about any command

Flags:
  -h, --help      help for ollama
  -v, --version   Show version information

Use "ollama [command] --help" for more information about a command.

我们翻译过来,和 docker 命令非常类似:

ollama serve # 启动ollama
ollama create # 从模型文件创建模型
ollama show  # 显示模型信息
ollama run  # 运行模型,会先自动下载模型
ollama pull  # 从注册仓库中拉取模型
ollama push  # 将模型推送到注册仓库
ollama list  # 列出已下载模型
ollama ps  # 列出正在运行的模型
ollama cp  # 复制模型
ollama rm  # 删除模型

2.2 Ollama 模型库

类似 Docker 托管镜像的 Docker Hub,Ollama 也有个 Library 托管支持的大模型。

传送门:https://ollama.com/library

从0.5B 到 236B,各种模型应有尽有,大家可以根据自己的机器配置,选用合适的模型。

同时,官方也贴心地给出了不同 RAM 推荐的模型大小,以及命令:

注:至少确保,8GB的 RAM 用于运行 7B 模型,16GB 用于运行 13B 模型,32GB 用于运行 33B 模型。这些模型需经过量化。

因为我的是一台没有 GPU 的轻量级服务器,所以跑一个 0.5B 的 qwen 模型,给大家做下演示:

root@535ec4243693:/# ollama run qwen2:0.5b
pulling manifest 
pulling 8de95da68dc4... 100% ▕████████████████████████████████████▏ 352 MB                         
pulling 62fbfd9ed093... 100% ▕████████████████████████████████████▏  182 B                         
pulling c156170b718e... 100% ▕████████████████████████████████████▏  11 KB                         
pulling f02dd72bb242... 100% ▕████████████████████████████████████▏   59 B                         
pulling 2184ab82477b... 100% ▕████████████████████████████████████▏  488 B                         
verifying sha256 digest 
writing manifest 
removing any unused layers 
success 
>>> 你是谁
我是来自阿里云的超大规模语言模型——通义千问。我能够理解、生产、传播各种语言和文字,可以回答您在任
何语言或任何问题的问题。

>>> Send a message (/? for help)

2.3 自定义模型

如果要使用的模型不在 Ollama 模型库怎么办?

GGUF (GPT-Generated Unified Format)模型

GGUF 是由 llama.cpp 定义的一种高效存储和交换大模型预训练结果的二进制格式。

Ollama 支持采用 Modelfile 文件中导入 GGUF 模型。

下面我们以本地的 llama3 举例,详细介绍下实操流程:

step 1: 新建一个文件名为 Modelfile 的文件,然后在其中指定 llama3 模型路径:

FROM /root/models/xxx/Llama3-FP16.gguf   

step 2: 创建模型

ollama create llama3 -f Modelfile   

step 3: 运行模型

ollama run llama3   

终端出现 >>,开启和 Ollama 的对话旅程吧~

下面是几个常用案例:

  • 多行输入:用"""包裹
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
  • 多模态模型:文本 + 图片地址
>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.
  • 将提示作为参数传递
$ ollama run llama3 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. 

PyTorch or Safetensors 模型

Ollama 本身不支持 PyTorch or Safetensors 类型,不过可以通过 llama.cpp 进行转换、量化处理成 GGUF 格式,然后再给 Ollama 使用。

关于 llama.cpp 的使用,小伙伴可以前往官方仓库:https://github.com/ggerganov/llama.cpp。下载后需要编译使用,成功后会在目录下生成三个可执行文件:

main:模型推理
quantize:模型量化,包括1.5位、2位、3位、4位、5位、6位和8位整数量化
server:提供模型API服务

不过我们只能需要用到它的模型转换功能,还是以 llama3 举例:首先安装项目依赖,然后调用 convert.py 实现模型转换:

pip install -r requirements.txt
python convert.py  /root/xxx/Llama3-Chinese-8B-Instruct/ --outtype f16 --vocab-type bpe --outfile ./models/Llama3-FP16.gguf

提示词实现模型定制

刚才我们介绍了 Modelfile,其中我们还可以自定义提示词,实现更个性化的智能体。

假设现在你从模型库下载了一个 llama3:

ollama pull llama3   

然后我们新建一个 Modelfile,其中输入:

FROM llama3

# 设置温度参数
PARAMETER temperature 0.7

# 设置SYSTEM 消息
SYSTEM """
你是猴哥的 AI 智能助手,将基于猴哥发表的所有文章内容回答问题,拒绝回答任何无关内容。
"""  

Ollama 实现模型量化

Ollama 原生支持 FP16 or FP32 模型的进一步量化,支持的量化方法包括:

Q4_0 Q4_1 Q5_0 Q5_1 Q8_0

K-means Quantizations:
Q3_K_S Q3_K_M Q3_K_L Q4_K_S Q4_K_M Q5_K_S Q5_K_M Q6_K

在编写好 Modelfile 文件后,创建模型时加入 -q 标志:

FROM /path/to/my/gemma/f16/model   
ollama create -q Q4_K_M mymodel -f Modelfile   

2.3 API 服务

除了本地运行模型以外,还可以把模型部署成 API 服务。

执行下述指令,可以一键启动 REST API 服务:

ollama serve   

下面介绍两个常用示例:

1、生成回复

curl http://129.150.63.xxx:11434/api/generate -d '{
  "model": "qwen2:0.5b",
  "prompt":"Why is the sky blue?",
  "stream":false
}'

2、模型对话

curl http://localhost:11434/api/chat -d '{
  "model": "qwen2:0.5b",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ],
  "stream":false
}'

更多参数和使用,可参考 API 文档:https://github.com/ollama/ollama/blob/main/docs/api.md

2.4 OneAPI 集成

OneAPI 也支持 Ollama 模型,我们只需在 OneAPI 中为 Ollama 添加一个渠道。

创建好之后,点击 测试 一下,右上角出现提示,说明已经配置成功,接下来就可以采用 OpenAI 的方式调用了。

2.5 Open WebUI 界面搭建

Open WebUI 是一个可扩展的自托管 WebUI,前身就是 Ollama WebUI,为 Ollama 提供一个可视化界面,可以完全离线运行,支持 Ollama 和兼容 OpenAI 的 API。

🚀 一键直达:https://github.com/open-webui/open-webui

Open WebUI 部署

我们直接采用 docker 部署 Open WebUI:

因为我们已经部署了 Ollama,故采用如下命令:

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main   

其中:--add-host=host.docker.internal:host-gateway 是为了添加一个主机名映射,将 host.docker.internal 指向宿主机的网关,方便容器访问宿主机服务

假设你之前没有安装过 Ollama,也可以采用如下镜像(打包安装Ollama + Open WebUI):

docker run -d -p 3000:8080 -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:ollama   

Open WebUI 使用

在打开主机 3000 端口的防火墙之后,浏览器中输入:http://your_ip:3000/,注册一个账号:

可以发现界面和 ChatGPT 一样简洁美观,首先需要选择一个模型,由于我们只部署了 qwen2:0.5b,于是先用它试试:

右上角这里可以设置系统提示词,以及模型参数等等:

在个人设置这里,可以看到内置的 TTS 服务:

管理员面板这里,有更多探索性功能,比如图像生成,如果你部署了 StableDiffusion,这里同样支持调用:

不得不说,Open WebUI 的功能真的非常强大,更多功能可参考官方文档:https://docs.openwebui.com/

感兴趣的小伙伴赶紧去试试吧~

3. 文末福利

相信看到这里的你,已经基本可以玩转 Ollama 了。

只不过觉得上述流程略显麻烦?

没问题,你的困惑早有人帮你搞定了,GitHub 上有开发者做了 docker-compose 一键整合安装包:

传送门:https://github.com/valiantlynx/ollama-docker

你只需要一行命令:

docker-compose up -d   

就能一键启动 Ollama + Open WebUI~

启动成功后,注意看一下不同容器的端口号:

docker ps   

接下来的操作,和前两部分一致,快去愉快玩耍吧~

写在最后

至此,我们一起走完了 Ollama 的部署和实战流程。

在我看来,Ollama 也许是目前最便捷的大模型部署和使用工具,对小白非常友好。

简单的命令行操作,用户即可快速启动和管理模型,极大降低了技术门槛,用户可以专注于模型的应用,而无需关注底层技术细节。此外,Ollama 的离线运行也为数据安全提供了保障。

期待大家在使用 Ollama 的过程中,发现更多有趣的 AI 应用场景。让我们一起推动大模型技术的应用落地,探索更广阔的可能性!

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

### 如何在本地环境中部署 DeepSeek 模型 #### 准备工作 为了成功完成 DeepSeek 模型的本地部署,需先准备好必要的软件工具环境配置。对于不同版本的 DeepSeek 模型,具体的准备工作可能有所不同。 针对 DeepSeek 2.5 的部署,建议按照官方提供的实战教程进行操作[^1]。而对于基于 KubeRay vLLM 部署的 DeepSeek-V3,则需要遵循特定的技术路径来设置环境并实现模型的私有化部署[^2]。至于较早版本如 DeepSeek-R1 1.5B,在 Windows 平台上可以通过安装 ollama 工具快速启动模型服务[^3]。 #### 安装依赖项 无论是哪个版本的 DeepSeek 模型,通常都需要预先安装一些基础组件或库文件作为支持。这一步骤的具体内容取决于所选平台以及目标硬件架构等因素的影响。例如: - 对于 Linux 或 MacOS 用户来说,可能会涉及到 Python 环境、CUDA/GPU 加速包等; - 如果是在 Kubernetes 上运行(比如使用 KubeRay),则还需要准备相应的集群资源服务定义文件; #### 下载与初始化模型 以 DeepSeek-R1 1.5B 版本为例,用户可以在命令行界面执行如下指令来进行模型下载及初步加载: ```powershell # 打开 PowerShell 终端窗口 ollama install ollama run deepseek-r1:1.5b ``` 上述命令会自动处理模型权重文件的获取过程,并将其缓存至本地存储位置以便后续调用。 #### 启动服务接口 一旦模型被正确加载之后,下一步便是开启对外的服务接口供应用程序连接请求。具体做法依据实际应用场景而定——可以直接利用内置 HTTP API 提供 RESTful 接口访问方式,也可以集成到更复杂的流水线作业当中去。 对于某些高级特性(如分布式推理能力的支持),可参照相关文档说明进一步优化配置参数以获得更好的性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值