打分排序系统漫谈3 - 贝叶斯更新/平均

上一节我们聊了聊用[Wilson区间估计来处理小样本估计],但从原理上来说这种方法更像是一种Trick,它没有从本质上解决样本量小的时候估计不置信的问题,而是给估计加上一个和样本量相关的置信下界,然后用这个下界替代估计进行打分。

想要从本质上解决小样本估计不置信的问题,一个更符合思维逻辑的方法是我们先基于经验给出一个预期估计,然后不断用收集到的样本来对我们的预期进行更新,这样在样本量小的时候,样本不会对我们的预期有较大影响,估计值会近似于我们预先设定的经验值,从而避免像小样本估计不置信的问题。

假设(\theta)是我们要给出的估计,x是我们收集的数据, (\pi(\theta))是我们基于经验给出的预期。贝叶斯表达式如下:

[ \begin{align} p(\theta|x) \propto p(x|\theta) * \pi(\theta) \end{align} ]

原理看似简单,但落实到实际应用就会出现几个问题:

  • 如何把实际问题抽象成概率分布 (p(x|\theta))
  • 如何设置预期概率分布 (\pi(\theta))
  • 如何用新样本对分布进行更新得到参数估计

让我们继续用之前点赞的例子,一个一个解答上面的问题

二元贝叶斯更新

  1. 样本分布抽象 (p(x|\theta)) 我们上一章已经讨论如何对用户的点赞拍砖行为进行抽象。简单来说每一个用户是否点赞(\sim Bernoulli§),用户间相互独立,所以N个用户对某一篇文章点赞量(\sim Binomial(n,p) = \left(! \begin{array}{c} n \ k \end{array} ! \right)pk(1-p){(n-k)}) 抽象出了样本的概率分布,,我们要如何用这些样本对我们想要估计的参数p(点赞率)进行更新呢?
  2. 预期分布抽象- 共轭分布(\pi(\theta)) 这就涉及到另一个概念- 共轭先验分布。名字非常高大上难以记住(刚刚wiki过才找到对应的中文…)。简单解释如果你的先验分布和后验分布一致,它们就分别是共轭先验和共轭后验。这个性质之所以如此吸引人就在于,可以持续用新样本更新先验分布。因为如果分布不变 (p(\theta|x_i) \propto p(x_i|\theta) * \pi(\theta))就可以一直连着乘下去(x_i , i \in (1,2,…N)) 有这种性质的分布有几种,而适用于二项分布的就是Beta分布。把先验分布设为beta分布,不断用二项分布的样本数据去更新先验分布,后验分布还是beta分布。 记忆卡片~Beta分布 Beta函数: (Beta(a,b) = \frac{(a-1)!(b-1)!}{(a+b-1)!}) Beta分布概率密度 (f(x;a,b) = x{(a-1)}(1-x){(b-1)}/Beta(a,b)) Beta分布统计值:(\mu = \frac{a}{a+b})
  3. 分布更新-贝叶斯更新 看到Beta分布的概率密度很容易联想到二项分布,因为它们十分相似。和二项分布对比x就是我们要估计的参数p,Beta分布的两个参数a,b分别对应正负样本数量k,n-k。换言之Beta分布是二项分布参数的分布。 下一步我们就需要用到Beta分布作为共轭分布的性质(先验后验分布不变)来对参数进行更新: [ \begin{align} \pi(p|\alpha+k, \beta+n-k) &= P(X=k|p, n) * \pi(p|\alpha, \beta)\ E(\hat{p}) &= \frac{\alpha + k}{\alpha + \beta + n} \leftarrow \frac{\alpha}{\alpha + \beta} \ where & \quad \pi(\alpha, \beta) \sim Beta(\alpha, \beta) \ & \quad x \sim Binomial(n,p) \end{align} ] 如果我们预期点赞和拍砖的概率是50%/50%,既(\alpha=\beta)。当我们对预期不是非常肯定的时候(对用户行为更相信),我们的(\alpha,\beta)可以给的相对比较小,这样样本会很快修正先验概率,反之(\alpha,\beta)给更大值。这里(\alpha,\beta)可以理解为我们根据预期设定的虚拟样本,下面是一个直观的例子: (\alpha =2, \beta = 2,\hat{p}=0.5), 当收集到1个点赞样本,更新后的参数变为,$\alpha = 3, \beta=2, \hat{p} \to 0.67 $ (\alpha =10, \beta = 10, \hat{p}=0.5), 当收集到1个点赞样本更新后的参数变为,$\alpha = 11, \beta=10, \hat{p} \to 0.52 $ 一个更直观的(\alpha, \beta)取值变化对参数p分布的影响如下图:

img

  • (\alpha, \beta)越大方差越小,p的分布越集中
  • (\alpha)增加,p估计均值越大
  • (\beta)增加,p估计均值越小 抛开数学的部分,用贝叶斯更新的方法来估计用户评分可以非常简单的用下面的表达式来表示,其中(\alpha)是预设的点赞量, (\beta)是预设的拍砖量, n是收集到的全部样本量,其中k是收集到的样本中点赞的数量。 [ \hat{p} = \frac{\alpha + k}{\alpha + \beta + n} ] 如何设定(\alpha \beta)决定了最终打分从哪里开始更新,以及最终打分对新样本的敏感程度。

多元贝叶斯更新

上述我们对用户的行为做了一个最简单的抽象,只包括点赞和拍砖两种行为。现实情况往往更复杂,比如用户打分(五星评分),这种情况我们应该如何使用贝叶斯来得到更加稳健的分数估计呢?

让我们对照着上面二项分布的思路来梳理一下

  1. 样本分布抽象 (p(x|\theta)) 假设用户的评分从1分-5分,用户最终打了3分,则可以抽象成一个有5种可能的多项分布,用户的选择用向量表示就是 ((0,0,1,0,0)) 。多项分布的表达式如下 [ \begin{align} P(x|\theta) &= \begin{pmatrix} N \ x_1,…,x_5 \ \end{pmatrix} \prod_{i=1}^5 \theta_i^{x_i} \ score &= \sum_{i=1}^5 p_i * i \end{align} ] 其中N是用户量,(x_i)是选择打i分的用户数,满足$\sum_{i=1}^5 x_i = N $, (\theta_i)是打i分的概率,满足 (\sum_{i=1}^5 \theta_i = 1) 我们通过收集到的用户打分来给出打1分-5分的概率,最终用多项分布的期望作为最终打分。
  2. 共轭先验 和二项分布一样,现在我们需要找到多项分布的共轭先验分布 - Dirchlet分布,也就是beta分布推广到多项。Dirchlet的分布概率密度如下: [ Dir(\theta|\alpha) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)…\Gamma(\alpha_K)} \prod_{k=1}^K \theta^{\alpha_k-1} ] 其中(\alpha_0 = \sum_i^K \alpha_k),当K=2的时候Dirchlet就是beta分布。和Beta分布相同, 其中(\alpha_i)可以理解为对打分为i的预期先验。
  3. 贝叶斯更新 确定了先验分布和后验分布,我们用和beta相同的方法用收集到的样本对参数进行更新。 [ \begin{align} Dir(\theta|D) &\propto P(D|\theta) * Dir(\theta|\alpha)\ Dir(\theta|D) &= \frac{\Gamma(\alpha_0 + N)}{\Gamma(\alpha_1 + m_1)…\Gamma(\alpha_K + m_k)} \prod_{k=1}^K \theta^{\alpha_k + m_k-1}\ \end{align} ] 上述的条件概率可以被简单理解为,当我们收集到N个样本其中(m_i)个样本打了i分,则打i分的概率会从预置的先验概率(\frac{\alpha_i}{\sum_i^k\alpha_i})被更新为 (\frac{\alpha_i + m_i}{\sum_i^k\alpha_i + N }) 有了后验概率,我们就可以得到最终打分如下 [ \frac{\sum_{i=1}^K i * (\alpha_i + m_i)}{\sum_i^k\alpha_i + N } ]
  4. 贝叶斯平均 针对小样本打分一种很常用的方法叫做贝叶斯平均,许多电影网站的打分方法都来源它。让我们先写一下表达式: [ x = \frac{C*m + \sum_{i=1}^K{x_i}}{C+N} ] 其中C是预置样本量(给小样本加一些先验样本), N是收集的样本量,m是先验的总体平均打分,(x_i)是每个用户的打分。贝叶斯平均可以简单理解为用整体的先验平均打分来对样本估计进行平滑。 其实让我们对上述基于Dirchlet分布给出的打分式进行一下变形 $\sum_{i=1}^K i * \alpha_i = C *m $, (\sum_{i=1}^K i * m_i = \sum_{i=1}^K x_i), 会发现两种计算方式是完全一致的!!

针对打分我们分别讨论了时间衰减,以及两种解决小样本估计不置信的方法。 但这只是打分系统很小的一部分,还有一块很有趣的是如何基于偏好调整最终的打分。以后有机会再聊吧

To be continue


Reference

  1. http://www.evanmiller.org/bayesian-average-ratings.html
  2. http://www.ruanyifeng.com/blog/2012/03/ranking_algorithm_bayesian_average.html
  3. https://www.quantstart.com/articles/Bayesian-Inference-of-a-Binomial-Proportion-The-Analytical-Approach
  4. https://en.wikipedia.org/wiki/Beta_function

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

  • 25
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值