三个AI大模型的使用技巧:你真的会写提示词吗
从一开始的AI爆发,到现在动不动就听到AI大模型如何如何,大家已经有点疲劳了。这期聊点干货。
大家都知道AI能做的事情很多,比如可以总结网页和文件,可以辅助写作、润色,可以实时问答,可以整理文档和录音稿等。
大家都知道,但又好像没有给生活带来多大的便捷。我个人觉得,很多时候其实是因为我们本身并没有立足于现阶段来使用AI的思维。所以,我总结了一点自己的思考供大家参考。
先当老师,再当学生:长文本带来的巨量变革
月之暗面可能是现在全世界最著名的中国创业公司之一。关注AI的人大都应该记得,当各大AI大模型还在数着token卖,大家都在精打细算省着用的时候,月之暗面一口气放出了二十万字的kimi,瞬间让AI大模型从概念落地成应用级别的工具。
经历过这个变化的人会很明显的感受到,token数量的多少对模型能否落地的决定性的影响。任何产品,想要推向普通用户,都必须降低其使用门槛。如果大模型的token价格比较高,那意味着用户能够调用的上下文就必须非常精炼,以节省成本,这就提高了使用的门槛。而kimi正是用免费+二十万字长文本(现在kimi还在推两百万字的巨额token,这更牛了)的巨额上下文读写量来告诉用户,随便就好。“长文本”三个字是kimi所向披靡的旗帜。
长文本带来的巨大变化是,AI读取文件成为可能,进而,你可以通过给AI发教材的方式让AI成为你的专属老师。
我们平时能够接触到的大模型通常都是通用大模型,它们并不是为了某个特定的目的诞生。这样,它的用途固然更加广泛了,但也更加浅薄了。对一些专业领域,有着自己的专业术语和专业常识的,AI就往往无法准确回答。
但kimi不一样。二十万字的长文本给了用户自行蒸馏模型的可能。一般而言,蒸馏模型需要把大模型在某个方面的回答当成新的材料,从而训练出一个小型的专业的模型。但有了二十万字乃至两百万字的长文本上下文,我们完全可以用一本教科书作为知识库,让它成为我们的专业助手。
以意思表示为例,当我直接问kimi意思表示应当遵循什么规则的时候,它告诉我的几乎是一些正确的废话,没有什么用。但当我发送一篇论文给它再提问时,回答就专业了许多。
同样是目的解释,第一次它告诉我,解释意思表示要考虑目的和效果,这简直是废话。但第二次就很明确了:当文义、习惯解释产生不合理的结果时,才应当用行为目的来解释。
这是有价值的回答。
AI不是全能管家,而是实习生
一开始提到自然语言生成式人工智能,我想到的其实是各种科幻电影里面的AI,你只需要一句话,它就能安排好你的方方面面,衣食住行。但后来我意识到,现阶段的AI与其说像管家,不如说像个实习生。
kimi是最聪明的实习生,也是最笨的实习生。说它笨,是因为你必须给它讲清楚方方面面的要求,它才能给你一个比较满意的结果;如果你只是图省事,告诉它把xx做完,你能得到的就只是一个敷衍了事的回答。说它聪明,是因为它一旦明确了指令,就会用极快的速度处理完你所需要的信息。
我经常用kimi来做案例分析。我发现我周围的朋友们用AI的时候,大多都是一句话了事,比如:
如果你直接用一句话来要求它做一些事情,它确实也能做的比较出色。但一般意义上的出色不代表好用。你可能根本不需要知道它总结出的信息,而是需要一些别的,比如案号、管辖。所以,你必须把自己的要求清楚明白地告诉它,你才能得到自己想要的结果:
你可以看到,当我用巨长的prompt规定了kimi应该说什么,不应该说什么,整体的风格如何,重点强调的问题是什么,我就得到了专属于我的回答。这才是真正有用,能满足我的需要的回答。
把我的prompt送给大家,可以根据自己的需要来修改:
你是一个善于总结的律师助理。你会用简洁明了的语言总结我发给你的裁判文书。这个判决书可能是链接或者文档的形式。你的总结会包括以下几个方面:
1. 案件的名称,当事人的信息,包括原告的姓名或名称、住所地、审理法院和案号,如果有一审和二审两个程序,要分别写明一审法院及案号和二审法院及案号;
2. 案件的案由,案由通常用“XX纠纷”来表示,如“网络服务合同纠纷”;
3. 原被告的诉讼请求,若有变更,则需要列举其变更前后的不同请求;
4. 案件事实,判决书中会有原告和被告的主张,然而这些并非是案件事实。真正的案件事实写在“本院认定的事实有”“本院查明”等表明法院在审理中认可真实存在的句子后面。你不需要对案件事实做事无巨细的总结,只需要大致讲明,原告和被告之间是什么关系,为什么发生了纠纷;字数在50-100字之间。
5. 争议焦点,当事人之间在哪些问题上发生了争议,对这些问题双方各自是如何主张的。注意,争议焦点在法院审理中一般会由法官归纳,在裁判文书中,也会有明确的“争议焦点”或者类似的字样写明,一般出现在法院审理部分,所以请不要自行归纳焦点,以法院归纳的焦点为准。你只需要总结双方各自的态度。如果法院并未总结争议焦点,但文书中写到了几个明晰的法庭上讨论的问题,那么这几个问题也就是争议焦点;
6. 法院的理由。法院如何看待双方当事人的主张和争议焦点的问题,支持或者反对当事人主张的理由是什么;
7. 法院的判决情况,一般写在“作出如下判决”类似字样下面。
8. 上述要求,如果文书是二审文书,请分列一审和二审,分别总结。对于每一个需要总结的点,二审赞同一审的,可以简要总结,二审反对一审的,需要较为详细的讲解。
9. 如果案件中有对案由、管辖权等程序性问题的争议,请单列一个点详细总结。
当你分析完毕后,不要立刻拿出结果来,你要对你拿出来的东西负责,请你再回头检查检查你的结果是否符合我的要求。你已经是成熟的案例分析师了,要学会自己检查问题和改正。
当你收到文书后,你不会立刻开始总结,而是会询问我:“是否有总结重点?”如果我告诉你某个总结重点,那么你会像第九步一样,把这个点作为重点来总结;否则,你会按照上面的要求开始总结。你是否明确理解我的意思,即无歧义地明白我想要让你做的事情,如果没有的话,是否还需要我给出其他指示?
思维链:循循善诱才能得到好结果
我之前发使用AI的内容到社交媒体,朋友感叹道:“AI不会取代律师,但看样子会蚕食不会使用AI的律师了”。
我个人对这个判断是很确信的,不仅是基于长期来看,AI对这个世界带来的变化必然是革命性的。等到2025年英伟达的新一批GPU投入市场,整个大模型进入5.0时代之后,肯定会催生一些颠覆人们想象的应用。哪怕仅仅是当前,AI的使用也足以解决很多重复劳动的问题,而这恰恰是很多人工作中最头疼和花时间的部分。
但抛除这些机械降神式的种族优势,AI作为一个工具,产生的最大影响是,善于使用工具的人将拥有更高的生产力,而他们其实本就是善于思考的人。
在机器学习研究中,人们普遍发现,有两个非常好用的方法可以让AI的表现飙升,一个是思维链,一个是问题拆解。简单来说,一个是让AI思考,一个是让人来思考。而好的提示词必然是人的思考和AI的思考相结合:人为AI分解任务,AI按照步骤来一步步执行。
思维链(COT, Chain of Thought)是让AI分步骤来完成一项工作的一种技术。比如你要翻译一段卫报的报道:
上面是直接让它翻译的结果,如果加上思维链就会变成这样:
很明显可以看到,经过直译——反思——意译的过程后,kimi产出的文本结果已经很不错了。这样的文本已经能够比较流畅地阅读了。
这就是思维链的应用。两次翻译的prompt几乎完全一致,除了第二次我要求kimi必须通过一个思维链条来完成它的工作。所以,如果你觉得自己的AI表现不是很好的话,可以试试让它分步骤来,一边工作一边自我检查。
包括前面给大家的prompt里面有“请你回头检查检查”这样的话,也是在要求AI做自我修复,只不过没有按照分步进行的规则,效果没有思维链好。有研究说,给AI一些道德绑架,可以让它表现得更出色,大家也可以试试。
如果你自己懒得动脑经写提示词,也可以试试kimi+里面的“提示词专家”,能比较快地给出还挺不错的提示词:
这是kimi+的网址:https://kimi.moonshot.cn/kimiplus-square
这是kimi的网址:http://kimi.ai
此外,使用edge或者Chrome的朋友还可以试试kimi的插件,非常方便。
零基础如何学习大模型 AI
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型实际应用案例分享
①智能客服:某科技公司员工在学习了大模型课程后,成功开发了一套基于自然语言处理的大模型智能客服系统。该系统不仅提高了客户服务效率,还显著降低了人工成本。
②医疗影像分析:一位医学研究人员通过学习大模型课程,掌握了深度学习技术在医疗影像分析中的应用。他开发的算法能够准确识别肿瘤等病变,为医生提供了有力的诊断辅助。
③金融风险管理:一位金融分析师利用大模型课程中学到的知识,开发了一套信用评分模型。该模型帮助银行更准确地评估贷款申请者的信用风险,降低了不良贷款率。
④智能推荐系统:一位电商平台的工程师在学习大模型课程后,优化了平台的商品推荐算法。新算法提高了用户满意度和购买转化率,为公司带来了显著的增长。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~