模型工具LangChain:原理详解与实战案例分析

LangChain 是什么?

LangChain是一个用于开发由语言模型驱动的应用程序的框架。它使得可以构建以下类型的应用程序:

  • 数据感知:将语言模型与其他数据源连接起来

  • 智能:允许语言模型与其环境进行交互

LangChain的主要价值在于:

  • 组件:提供了处理语言模型的抽象,以及每个抽象的多个实现。组件是模块化且易于使用的,无论您是否使用LangChain的其他部分。

  • 现成的链:结构化组件的组合,用于完成特定的高层任务。

LangChain 安装

要安装LangChain,请运行以下命令:

  • 使用Pip

  • 使用Conda

pip install langchain  


这是安装LangChain的最基本要求。LangChain的真正价值在于将其与各种模型提供者、数据存储等进行集成时产生。默认情况下,安装LangChain不会安装这些依赖项。不过,有两种其他方法可以安装带有这些依赖项的LangChain

要安装与常见的LLM提供者相关的模块,请运行:

pip install langchain[llms]  


要安装所有集成所需的模块,请运行:

pip install langchain[all]  


请注意,如果您使用的是zsh,在将方括号作为命令参数传递时,需要使用引号括起来,例如:

pip install 'langchain[all]'  


LangChain 基础案例

OpenAI Key设置

from langchain.llms import OpenAI  
llm = OpenAI(openai_api_key="...")  


使用LLMs进行预测,并通过设置温度参数来调整生成的文本的随机性。

from langchain.llms import OpenAI  
llm = OpenAI(temperature=0.9)  
llm.predict("What would be a good company name for a company that makes colorful socks?")  
# >> Feetful of Fun  


使用聊天模型进行对话的方法,包括使用不同类型的消息对象进行输入和输出。

from langchain.chat_models import ChatOpenAI  
from langchain.schema import (  
    AIMessage,  
    HumanMessage,  
    SystemMessage  
)  
  
chat = ChatOpenAI(temperature=0)  
chat.predict_messages([HumanMessage(content="Translate this sentence from English to French. I love programming.")])  
# >> AIMessage(content="J'aime programmer.", additional_kwargs={})  


使用提示模板将用户输入和指令结合起来,以提供更多上下文信息。

from langchain.prompts import PromptTemplate  
prompt = PromptTemplate.from_template("What is a good name for a company that makes {product}?")  
prompt.format(product="colorful socks")  


使用链将模型和提示模板连接起来,实现更复杂的工作流程。

from langchain import LLMChain  
from langchain.chat_models import ChatOpenAI  
from langchain.prompts.chat import (  
    ChatPromptTemplate,  
    SystemMessagePromptTemplate,  
    HumanMessagePromptTemplate,  
)  
chat = ChatOpenAI(temperature=0)  
template = "You are a helpful assistant that translates {input_language} to {output_language}."  
system_message_prompt = SystemMessagePromptTemplate.from_template(template)  
human_template = "{text}"  
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)  
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])  
chain = LLMChain(llm=chat, prompt=chat_prompt)  
chain.run(input_language="English", output_language="French", text="I love programming.")  


代理可以根据输入动态选择不同的操作。

from langchain.agents import AgentType, initialize_agent, load_tools  
from langchain.llms import OpenAI  
llm = OpenAI(temperature=0)  
tools = load_tools(["serpapi", "llm-math"], llm=llm)  
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)  
agent.run("What was the high temperature in SF yesterday in Fahrenheit? What is that number raised to the .023 power?")  


使用存储器来保持应用程序的状态,并在下一次运行时使用存储的状态。

from langchain.prompts import (  
    ChatPromptTemplate,  
    MessagesPlaceholder,  
    SystemMessagePromptTemplate,  
    HumanMessagePromptTemplate  
)  
from langchain.chains import ConversationChain  
from langchain.chat_models import ChatOpenAI  
from langchain.memory import ConversationBufferMemory  
  
prompt = ChatPromptTemplate.from_messages([  
    SystemMessagePromptTemplate.from_template(  
        "The following is a friendly conversation between a human and an AI. The AI is talkative and "  
        "provides lots of specific details from its context. If the AI does not know the answer to a "  
        "question, it truthfully says it does not know."  
    ),  
    MessagesPlaceholder(variable_name="history"),  
    HumanMessagePromptTemplate.from_template("{input}")  
])  
  
llm = ChatOpenAI(temperature=0)  
memory = ConversationBufferMemory(return_messages=True)  
conversation = ConversationChain(memory=memory, prompt=prompt, llm=llm)  
conversation.predict(input="Hi there!")  


LangChain 组成结构

LangChain提供了标准、可扩展的接口和外部集成,用于以下模块,按照从简单到复杂的顺序排列。

Model I/O

Model I/O是任何语言模型应用程序的核心元素。LangChain提供了与任何语言模型进行交互的构建模块。

  1. Prompts(提示):将模型输入进行模板化、动态选择和管理。

  2. Language models(语言模型):通过通用接口调用语言模型。

  3. Output parsers(输出解析器):从模型输出中提取信息。

使用这些模块,可以有效地管理和处理与语言模型的交互。模板化输入、调用模型和解析输出是构建语言模型应用程序的关键步骤。

Data connection

Data connection是许多LLM应用程序所需的一部分,它涉及用户特定的数据,这些数据不是模型的训练集的一部分。LangChain提供了构建模块,通过以下方式加载、转换、存储和查询数据:

  1. Document loaders(文档加载器):从多种不同的来源加载文档。

  2. Document transformers(文档转换器):对文档进行分割、去除冗余文档等操作。

  3. Text embedding models(文本嵌入模型):将非结构化文本转换为浮点数列表。

  4. Vector stores(向量存储):存储和检索嵌入数据。

  5. Retrievers(检索器):对数据进行查询。

使用这些构建模块,可以有效地加载、转换、存储和查询用户特定的数据,为LLM应用程序提供必要的数据连接。

Chains

Chains是LangChain提供的用于构建“链式”应用程序的接口。在简单的应用程序中,单独使用LLM是可以的,但更复杂的应用程序需要将LLM进行链接,无论是与其他LLM还是其他组件进行链接。

LangChain为这种“链式”应用程序提供了Chain接口。我们将Chain定义为对组件的一系列调用,可以包括其他链。

Agents

Agents在一些应用程序中需要根据用户输入灵活地调用LLMs和其他工具。Agent接口提供了这种应用程序的灵活性。Agent可以访问一系列工具,并根据用户输入决定使用哪些工具。Agent可以使用多个工具,并将一个工具的输出作为下一个工具的输入。

Agent主要分为两种类型:

  1. Action agents(行动型Agent):在每个时间步骤中,根据之前所有行动的输出决定下一步的行动。

  2. Plan-and-execute agents(规划执行型Agent):在前期决定完整的行动序列,然后按计划依次执行,而无需更新计划。

Action agents适用于小任务,而plan-and-execute agents更适用于复杂或长时间运行的任务,这些任务需要维持长期目标和焦点。通常最佳方法是将action agent的动态性与plan-and-execute agent的规划能力相结合,让plan-and-execute agent使用action agents来执行计划。

Memory

Memory模块旨在处理应用程序中的状态,并在链式应用程序或代理的运行之间保留和持久化应用程序数据。它允许您记住和引用先前的交互,并在诸如聊天机器人等应用程序中保持上下文。

Callbacks

LangChain提供了一个回调系统,允许您在LLM应用程序的各个阶段进行钩子操作。这对于日志记录、监控、流式处理和其他任务非常有用。

可以根据需要实现这些方法来执行自定义的回调逻辑,例如记录日志、发送通知、保存输出等。这使您能够在应用程序执行过程中进行观察和干预,并根据需要采取相应的操作。

LangChain 优缺点

优点
  • LangChain采用组件化的设计,提供了一系列模块和接口,使得开发语言模型应用程序变得简单和灵活。开发人员可以选择和组合各个组件,以构建符合自己需求的应用。

  • LangChain支持外部集成和扩展,可以与各种语言模型提供商、数据存储和其他工具集成。这使得开发人员能够根据自己的需求选择最适合的组件和工具,提高应用的灵活性和功能性。

  • LangChain提供了各种模块和工具,适用于不同的应用场景,包括问题回答、聊天机器人、智能代理等。无论是简单的应用还是复杂的应用,LangChain都提供了相应的组件和示例,帮助开发人员快速构建应用。

  • LangChain提供了内存模块,可以在应用程序的不同运行周期中持久化应用状态。这对于需要记住之前交互的应用程序非常有用,如聊天机器人。内存模块使得开发人员可以方便地管理和访问之前的交互数据。

缺点

由于LangChain是一个功能强大且灵活的框架,对于新手开发人员来说,可能需要一定的学习曲线才能熟悉其各个组件和工作原理。对于没有经验的开发人员来说,可能需要花费一些时间来理解和掌握LangChain的使用方法。

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。

AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。


这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

四、LLM面试题

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值