总有人问我,大语言模型这么强了,究竟能不能代替程序员?
我的答案是,大语言模型可以给程序员提效,精简研发团队和流程,但替换还谈不上。
LLM出现后,有人说:完蛋了,程序员要大面积失业了。
我不这样看。
LLM对于软件开发,什么变了?什么没有变?
变化的是,基础编码能力的知识平权,进而带来局部效率的提升。
没有变的是,现代软件工程对应的是规模化场景下的各种问题,基于LLM实现的编程提效只是其中的一小部分,而其中最重要的需求和代码演进模式都没有发生本质的变化。
编程不等于软件工程,编程只是软件工程的一部分。
软件工程有四大内在特性:复杂度、不一致性、可变性、不可见性。这些并没有因为LLM的出现而发生本质的变化,而这些才是软件工程面临的主要矛盾。
软件的复杂度,说的是需求分析和软件设计部分是复杂的,而不是局部的编码变简单。
软件的不一致性,说的是软件依然是知识手工业,LLM出现并未解决这个不一致性的概率,反而可能放大这个不一致性的概率。
我们只有需求说的足够清楚,代码才足够准确,如何准确描述需求变成了关键。
但要想把需求描述到能让它写出代码,需要的工作量似乎已经接近甚至超越过编码了。
很多人不能很好的描述需求,但不影响他写代码。
还有,很多产品经理提的需求,背后其实有很多暗知识,就是程序员已经对产品需求中不包含的信息进行了补充。
软件的需求,不仅仅是功能性的,还有很多非功能性的,这两者都是需要描述清楚的。
总之,软件从业者高估了编程的复杂度,但低估了功能和设计的复杂度。
软件的可变性,说的是软件会随着需求不断演进和变化,所以架构设计和模块抽象只能面向当下,它天然是短视的,或者局限性的,这往往是优秀的架构师也难以逾越的。
也正因为此,敏捷开发模式才被倡导起来了,需求是零散的,目标是模糊的,在有限的视角下,架构自然是有局限的,对此LLM也无能为力。
需求变化之后,程序员一般是在原有代码基础上改动,而不是直接从头全量生成全部代码,而这种局部的改动,对程序员和LLM都不容易。
LLM写代码,本质上不是基于修改意见(Prompt)做代码修改,而是基于修改意见(Prompt)重新写了一份。
软件的不可见性,说的是软件不存在客观的形体,不同的侧面看会有不同的视图,这种强行可视化会造成构图的复杂,但无法可视化,就限制了有效的交流和沟通。
如果团队或者软件规模变得更大,这个问题就会变得更严重,软件研发过程中的沟通成本,决策成本,认知成本,试错成本都会变大。
这才是软件工程问题的本质,自始至终都没有变过,LLM对此也无能为力。
LLM只是实现了编程提效中的一小部分,而现代软件工程则需要应对规模化场景下的各种问题。
LLM时代,软件研发需要更多思考的是:
1. 替代的是码农,共生的是工程师,也就是编码的最后一公里,可以被LLM代替,而工程师需要关注业务的理解,需求的分析,需求的拆解,架构的设计,理解问题本质,机器是副驾驶,工程师是主驾驶;
2. 有利于控制研发团队规模,保持小团队的优势,一部分重复的工作可以通过LLM提效;
3. 暗知识,系统设计或者需求不一定全是以文档形式存在,往往是在程序员或架构师的脑子里,或者在讨论的过程中,即便是有文档,也是个结果文档,大量的推导过程,妥协过程也不是在文档上体现的,这些被称为暗知识,这些暗知识是没法喂给LLM的。总之,你想到的多过你说出来的,你说出来的多过你能写下来的;
4. Prompt即代码,代码不再只是代码,转换一种编程范式,当需求变更了之后,不是去修改代码,而是修改Prompt,基于Prompt版本做代码管理,这是编程范式的改变,我们用LLM重写低代码引擎,也是这个逻辑,Prompt即代码;
5. 直接可运行,Prompt to executable 软件开发范式的可能性,随着Prompt即代码,编程范式的变化,基础设施也会随之变化,CICD等一系列工程实践,最终直接向终端交付价值,Serverless是Prompt即代码的一种可能实现;
6. 计算机教育的反思,LLM证明了死记硬背+简单推理,就能超过大部分人,那教育的目的是什么?教育是应该把人培养成机器,还是把机器培养成人;
也许我们全都错了,我们需要新的思考与反思。
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈