AI 工程师的 10 个MCP、智能体和&RAG 项目动画流程演示

1MCP-powered智能体RAG

img

在本项目中,您将学习如何创建一个由MCP 提供支持的智能体RAG,用于搜索向量数据库并在需要时回退到Web 搜索。

2 多智能体书籍作家

在本项目中,构建一个智能体工作流,该工作流可以从3-5 字的书名中编写一本20k 字的书。

img

3 音频上的RAG

在这个项目中,学习如何构建一个能够摄取和理解音频内容的RAG系统——想想播客、讲座等等!

img

4 构建本地MCP 服务器

MCP 将继续存在。在本项目中,您将通过简单的类比来理解MCP,构建本地MCP 服务器,并通过Cursor IDE 与之交互。img

5 由Lllama 4 提供支持的RAG

Meta 最近发布了多语言和多模式开源LLM4。了解如何构建由Llama 4 提供支持的RAG 应用程序。img

6 由DeepSeek Janus 提供支持的多模态RAG

在本项目中,使用如下复杂数据集构建本地多模态RAG:

img

1.Colpali 来理解和嵌入文档。

2.Qdrant 作为向量DB。

3.DeepSeek Janus 作为多模态LLM。·

7 使用DeepSeek-R1 的mini-ChatGPT

在这个项目中,使用DeepSeek-R1、Ollama 和Chainlit 构建一个本地迷你ChatGPT。你可以像与ChatGPT 聊天一样与它聊天。img

8 矫正型RAG

矫正RAG 是改进RAG 系统的常用技术。它引入了检索到的文档的自我评估步骤,这有助于保持生成的响应的相关性。

img

9 构建您的推理模型

在本项目中,学习如何训练推理模型,例如DeepSeek-R1,使用Unsloth 进行高效微调,并使用Llama 3.1-8B 作为LLM。img

10微调DeepSeek-R1

在本项目中,使用如下复杂数据集构建本地多模态RAG:

在本项目中,您将微调私有和本地运行的DeepSeek-R1(微调的Llama 变体)。

img

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值