AI 实践笔记:2月个人知识库搭建(Obsidian|DeepSeek|IMA)

写在前面

2 月深度探索了个人知识库与AI 结合,体验还不错,记录下方法和思考。我过去尝试过OneNote、EverNote、Apple备忘录、飞书Doc、腾讯 Doc,但是最终都弃坑了,不是这些产品力不行,只是不适合我。

我的痛点如下

  • 产品容器要纯粹稳定简单。纯粹是不要太多广告营销(EverNote),稳定是内容存到本地并能离线编辑(飞书Doc、腾讯 Doc),简单是支持Markdown格式(OneNote)。
  • 产品不能只是一个容器。知识库搭建容易陷入一个误区,就是把知识库当成信息存储工具,最终信息过载到知识库“热寂”。
  • 产品有创造局部有序的功能。知识库产品的下限是具备容器的能力,上线是有知识管理思维。预防知识库“热寂”的唯一方式是对抗熵增,面对知识库的熵增,产品在信息分类、知识管理上提供一些能创造局部有序的功能。
  • 能够一键打通优质信源,方便收集和整理。
  • 能够使用AI,支持本地知识库探索或在线问答。

以上是我对知识库产品的核心痛点,其中创造局部有序的功能是我最大的痛点。如果你和我有类似的痛点,相信接下来这个解决方案对你有一些帮助。

搭建流程

我的解决方案是Obsidian+Copilot+IMA,接下来我从信息收集、分类、应用三个方面介绍这套方案。
1/ 信息收集
信息收集分成两种:个人信息、公域信息。
个人信息指每天的冒出来的想法和感觉,这类时效性要求很高,例如一个灵感,不迅速记录可能就忘了,这类我现在都用豆包智能体记录。
如果你也想尝试一下,欢迎使用我常见的豆包智能体。

MKFlomo - 豆包智能体[https://doubao.com/bot/ZtJCwXun]

公域信息指不同平台的文章、视频、图文等,我主要收集图文信息。微信公众号文章用五彩插件,网页浏览文章用Obsidian 官方插件或者五彩插件,我平时五彩插件用的多,同步速度也挺快的。
官方插件:Obsidian Web Clipper[https://obsidian.md/clipper]
五彩插件:五彩插件[https://doc.wucai.site/]
image.png

2/ 信息分类
信息分类是我最钟意Obsidian的部分,结合 dataview插件与属性,能很好的将收集的信息展示出来。任何信息的收集一定都可以归类到主题,至于笔记放在哪个文件夹其实不重要,如果能构建自己的知识主题,相关笔记自然可以分类到该主题下,并且动态更新。

Dataview:是一个功能强大的插件,用于在 Obsidian 笔记中动态查询和展示数据。它允许用户通过特定的语法从笔记中提取、整理和展示信息,就像一个小型的数据库工具,非常适合管理复杂的知识体系和项目。

我用 dataview 来展示全量的笔记,方便我按日期来看最近更新了哪些笔记。同时我分主题来看最近有哪些笔记,方便对主题进行优化。通过 Dataview函数和属性插件,基本上摆脱物理文件夹的思路,查找文件直接从每个主题去看就行,也方便对每个主题下的文件进行管理。

按日期倒序列出来每天新增的笔记
image.png

分主题列出来我有哪些笔记
image.png

属性:通常指的是一些可以管理、展示或操作笔记属性(如元数据、标签、YAML Frontmatter 等)的插件。这些插件可以帮助用户更高效地组织和利用笔记内容,尤其是在需要对笔记进行分类、查询或动态展示。属性可以在 meta data里面设计,也可以通过 templater 插件对新增笔记进行添加。
image.png

信息分类还有很多用法不展开了,例如索引、内外链、tag 等等,核心是让笔记与笔记之间建立联系,把单点的知识串起来,形成一个知识关系图谱,这里解决了知识库管理局部有序的痛点。例如点开搜索增强笔记,我大概能支持这些笔记与哪些笔记相关,哪些笔记是我收集的,哪些是我自己总结的。

图片
3/ 知识库应用
在完成信息收集和分类之后,这里主要介绍一下知识库如何使用AI。

AI配置
通用的解决方案是使用 copilot,copilot 可以接各大厂商的大模型API,我之前用硅基流动,现在用火山引擎,实测下来,还是火山引擎好一些。通过火山引擎能用到豆包、DeepSeek等一系列模型。
硅基流动配置:硅基流动配置Obsidian Copliot
火山引擎配置:火山引擎配置Obsidian Copliot[https://www.zhihu.com/zvideo/1878038640178909185]
image.png

Copilot 使用
copilot 有 chat、vaultQA及 copilot plus beta 版本。chat 就是对话模型,我一般不去 DeepSeek 官网了,直接在 chat 里面聊各类问题。vault QA是支持本地知识库回答,限定于知识库回答。beta 版本要付费,支持多模态输入和输出,但是我没用。在写这篇文章的时候,copilot 会显示相关笔记,还挺准的,基本上是与这个主题相关的笔记。

image.png

另外无论是 chat 还是 vaultQA都有 Suggested Prompts,如何问好一个问题,是回答好一个问题的关键。我对知识库设定了一些通用的 prompt,例如基于第一性原理,回答相关主题,这些 prompt 都可以存下来,后面反复使用。每次问答的结果都能一键存档,非常方便了。

问题:基于设定的 prompt 框架。
image.png

回答:基于知识库内容。
image.png

问题&回答:基于本地文档,进行回答。
image.png

基于收集的信息,无论是学习新主题还是优化内容,确实能产生意想不到的效果,并且能将内容一键存档,copilot 好用爱用!

写在后面

信息收集不是知识库搭建的目的,打造知识循环利器才是知识库存在的必要,其中最难的是要对抗知识库信息熵增,而Obsidian 的局部功可以让笔记之间形成了关联,同时让知识从收集到输出无缝衔接。

最后的最后,如果是PDF类型的资料,我会倾向用IMA,支持下兄弟部门的产品,所以想清楚需求再选择对应的产品还是很重要的~

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值