实用主义×客户至上:大模型落地不能玩虚的

前言

烟花易冷,即便火爆如大模型也不例外。肇始于2023年的AI创业潮,到了当下已出现一批批“倒在沙滩上”的公司,其中不乏网红级的大模型,甚至有预言“未来三年80%的大模型都会消失”。

图片

根据Jackie Fenn提出的“技术成熟度”理论,创新活动受人的本性和技术演进的内在规律双重影响——钟形曲线描述炒作进程,S形曲线反映技术发展轨迹,二者相互作用不断将创新推向“命运的岔路口”。

大模型正是处于这样的关键节点。一方面, scaling law驱动的参数上升斜度呈现趋缓迹象,训练与推理的价格战也如火如荼,技术创新的狂热期似乎告一段落;另一方面, 生成式AI加速渗透的脚步并未停歇,各种新兴应用层出不穷,整个人工智能产业对大模型全面落地寄予厚望。

此时,与其期待某家大模型厂商发个大招,畅想“一觉醒来世界已翻天覆地”,不如回归技术创新和商业运行的基本规律,寻找前行道路上的“真问题”,探索大模型落地的具体方法与实践路径。

图片

在亚马逊云科技re:Invent大会上,全球云计算巨头交出了自己的答卷——重磅推出生成式AI模型Amazon Nova,以比肩一流大模型的性能和卓尔不群的性价比,开辟出实用主义的进化路线;同时,全面升级Amazon Bedrock,在充分尊重客户选择权的基础上,直面大模型落地的效率痛点,为生成式AI实现“下沉”目标奠定根基。

图片

笔者认为,与炫技的璀璨烟花相比,“实用主义×客户至上”也许并不吸睛,但大模型要行稳致远,脚踏实地才是正途。

解除大模型落地的“心魔”:创造更多的可能性,让客户自由选择

知名研究公司Gartner发布的报告显示,预计到2025年底,目前正在运行或纳入计划的生成式AI项目,将有30%因高昂的费用、无效的反馈而被放弃。

就大模型领域而言,很多行业客户也时常陷入两难境地:好用的大模型太贵,无法承担长期的巨额投入;便宜的大模型不敢用,担心对核心业务产生负面影响。

不难看出,虽然市面上大模型的数量众多,但客户的实际可选项却相当有限。Amazon Nova的横空出世,有望提供一种全新的可能性——性能顶尖且性价比突出。与同类模型相比,Amazon Nova的性能指标在各项基准测试中都是相等或更好,且能依托亚马逊云科技的综合底座实力,在训练与推理环节赢得显著的成本优势,大幅降低用户的使用门槛。

图片

尤值一提的是,Amazon Nova还以各具特色的基础模型满足客户不同类型的需求。既有适用于简单任务的文字处理Amazon Nova Micro模型,又有丰富的多模态模型——低成本的Amazon Nova Lite模型、兼具准确性和速度的Amazon Nova Pro模型,以及用于复杂推理任务且可进行蒸馏定制的Amazon Nova Premier模型。此外,图像生成模型Amazon Nova Canvas、视频生成模型 Amazon Nova Reel也惊艳亮相,语音到语音、多模态输入到多模态输出等前沿模型将于明年一季度正式登场。

图片

“总有一款适合你”的故事并未到此结束,Amazon Bedrock更是创建了一个“Marketplace”,致力于达成“最多大模型选择、满足客户所有场景需求”的目标。这里不仅有来自全球九家领先人工智能公司的高性能基础模型,而且提供100多种通用和行业模型,用户可使用统一API调用模型,并利用Amazon Bedrock的知识库、Guardrails、Agents等能力定制模型、构建应用。

一个大模型“包治百病”的时代一去不返,基于特定用例适配不同模型的新阶段已经来临。拥有更多选择可能性和更大自主权的客户,将消除与大模型“亲密接触”的顾虑,阻碍大模型落地的“心魔”有望烟消云散。

扫清大模型落地的“地障”:在核心诉求、成本、效率等因素间寻找最佳平衡点

在大模型落地的现实场景中,很多问题涉及的因素非常复杂,无法采用“非黑即白”的模式进行选择。对客户来说,最重要的是基于自身的核心诉求,找到性能、功能、成本、效率等指标之间的最佳平衡点。

图片

模型蒸馏是“凝聚精华”的有效方式,可以帮助客户达成“小而美”的预期目标。 从大模型特征的角度看,有些模型具备专业知识但成本高、速度慢,有些模型成本低、速度快却能力有限。少数客户依靠机器学习专家团队的帮助,可完成“模型蒸馏”过程,得到自己想要的模型,但多数企业却没有相应的资源和能力。亚马逊云科技发布的模型蒸馏功能简化了繁复的流程,可提升推理速度高达500%,成本降低75%,让模型蒸馏真正进入普惠时代。

图片

持续完善“提示词”工具箱,是客户提升大模型使用效率的必由之路。 开发人员通常需要花费大量时间评估模型在各个应用场景的效用,在响应速度、准确性、成本、延迟等因素间寻求微妙的平衡。当发生场景切换时,上述权衡过程又要重来一遍,唯有借助有效工具才能平滑腾挪。Amazon Bedrock可对多次API调用中常用提示词进行缓存,使特定模型效率提升85%、成本降低90%;同时,Amazon Bedrock还支持智能提示词路由,在无损质量、不影响准确性的情况下,成本降低30%。

不断挖掘“私有数据”的潜在价值,是客户释放大模型能量的最优方式。 只有将私有数据与大模型应用深度结合,才能获得定制化的解决方案——但由于数据源非常繁杂,客户难以检索到高质量的数据,后续的数据挖掘也就无从谈起。全新的Amazon Kendra索引为知识库提供语义准确性高的托管检索方案,内置超过40种企业数据源,让跨应用程序连接数据变得简单;Amazon Bedrock知识库还支持结构化数据检索、GraphRAG,并能自动将非结构化的多模态内容转换为结构化数据,填平了数据与AI应用间的鸿沟。

治愈大模型落地的“智能局限”:以自动推理、安全防护和Agents协同为新“配方”

在很多行业,大模型应用已逐步迈向“深水区”——不再局限于简单的边缘业务,而是向核心生产环节渗透。在这样的背景下,企业客户对大模型出现幻觉基本上是“零容忍”,建立更系统的安全防护机制迫在眉睫。

针对大模型幻觉难题,亚马逊云科技最新发布了自动推理检查功能,通过提供可验证的证据确保大模型的准确性。从原理来看,自动推理主要依托可靠的数学技术来验证是否符合专家创建的推理政策,从而提高大模型的透明度,最大限度减少幻觉。

除了幻觉外,一些有害内容在大模型应用中也会造成不良影响,客户亟需构建行之有效的“护栏”。Amazon Bedrock Guardrails可提供业界领先的安全保护,根据不同应用的要求和负责任的AI政策制定保障措施,能阻止高达85%的有害内容。最近,Amazon Bedrock Guardrails还新增多模态有害内容检测功能,支持对图像数据的防护。

图片

从某种意义上讲,AI Agent(智能体)是决定大模型“智商”上限的核心角色。目前单个Agent能执行简单的多步骤任务,但要整合数百个Agents执行复杂任务,就可能出现“智障”现象。亚马逊云科技全新发布的Amazon Bedrock multi-agent collaboration可确定哪些Agents访问机密信息,并按顺序触发或并行执行任务。如果多个Agents返回信息,它可在其间解决分歧,确保所有协作都指向专用Agent。

多年以后,每个人身边可能都有成百上千个智能体助手,而那时的大模型会变成数智新世界的阳光、空气和水,默默滋养着万事万物。美好的未来在前方召唤,脚下的路还是要一步步走——实用主义是浪漫情怀的最佳伴侣,勇敢上路者永不孤单。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值