又是一年毕业季,据教育部统计,2024届全国普通高校毕业生规模预计达1179万,同比增加21万。大家在平台上纷纷表达了自己的迷茫与困惑。
随着AI的不断发展,大家可以将自己的求职问题输入进AI中,让其来帮助你解决困难,寻找到心仪的工作~下面小编将实测以下国内8大AI模型,大家可根据实测内容自行体验~
(仅图片展示,与实测排序无关)
讯飞星火,推荐指数⭐⭐⭐⭐⭐
推荐原因一:布局便利
用户进入官网时,可以直接寻找到你想要的AI求职助手。
推荐原因二:AI简历助手
为不知如何写简历的职场小白提供相关专业模板与建议,并在此基础上进行自定义修改。(可免费下载PDF、图片,word形式,但限制次数,请认真修改~)小编输入指令“请给我一份适合软件工程专业高校毕业生的简历,突出我在实习中的表现”便得到如下结果~
视频内容
推荐原因三:AI个性化模拟面试
除了从简历制作中一键到达AI面试,其面试内容不区分专业。还可以从“AI面试官“中进行模拟面试,与之前不同的是,AI面试官可根据你的个人简历来进行分析,模拟面试!
文心一言、智谱清言,推荐指数⭐⭐⭐⭐
优点:有各自相应的AI插件
缺点:无法在线做成简历,只能用文字进行改动,且智谱清言智能体中心中很多来自网友自发制作AI应用,质量安全性难以保障
输入“作为一位刚刚毕业的软件开发专业大学生,我想知道该专业的就业前景”指令,文心一言与智谱清言都进行联网搜索整合,并提示你可以再次提出哪些问题。
通义千问,推荐指数⭐⭐⭐
虽然通义千问可以在工作上提高一定的效率,但是小编认为它在AI求职功能上并不是太出色~输入“作为一位刚刚毕业的软件开发专业大学生,我想知道该专业的就业前景”指令,与文心一言,智谱清言相同的是,都可以进行联网搜索整合,并直达相关链接,但是并不会提示你可以再次提出哪些问题进行回答。并且智能体中心应用中很多来自网友自发制作AI应用,质量安全性也难以保障。
百川、豆包、Kimi、混元,推荐指数⭐⭐
输入“作为一位刚刚毕业的软件开发专业大学生,我想知道该专业的就业前景”指令,可以进行联网搜索整合,并直达相关链接,
上传你自己做好的简历想进行优化,结果写的都仍然太过于泛化~(以百川和Kimi举例)
且百川、豆包、kimi、混元没有与AI职业相关的智能体供大家使用~
总结
小编整体实测后,认为讯飞星火是最好用的,它可以根据不同的专业,每个人不同的经验进行简历的定制,优化,以及使用AI面试官进行模拟面试,职场小白可以得到专业的优化建议,以及在实际的面试中应付自如~
但是在给出的回答中,文心一言与智谱清言可以根据第一次的回答,向用户提出问题建议,帮助用户拓展自己的思路,再一次次的问题建议下可以找到自己想要的职业方向与答案。
所有的8款AI模型实测,其都可以进行联网搜索整合,并直达相关链接,可以节约大量时间成本,但是百川、豆包、kimi、混元给出的回答有些泛化,不能够及时寻找到职业思考的方向,也许会让自己感觉更加的疑惑。
你有使用过AI来帮助求职吗?你有自己喜欢的AI求职助手吗?你想对哪些AI提出优化建议(严肃批评)?
欢迎来评论区留言,大家一起来种草和拔草!
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词
- L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节
- L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景
- L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例
- L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓