一句话总结:如果你真的能把 deepseek融入到日常工作流程里,就像突然获得了漫威宇宙里的J.A.R.V.I.S智能管家,只不过我们调教的不是钢铁战衣,而是产品设计的底层逻辑。
人要做的是更高层次的逻辑思考,曾经需要熬夜爆肝的脏活累活给 deepseek就行。
上周三发生了一件事儿,当时我正在准备智能家居App的年度规划,需要同时处理三件头疼事:
梳理3000条用户反馈
制作竞品功能对比矩阵
撰写商业需求文档。
放在以前,这三项工作至少需要拉通设计、运营、研发开三个跨部门会议,再独自对着Excel熬两个通宵。
那天早晨我试着把原始数据丢给DeepSeek,附上提示语:"假设你是拥有十年IoT经验的产品总监,请用SWOT模型分析用户痛点,输出功能优先级时考虑技术实现成本,关键结论用比喻手法解释"。
两分钟后,我得到的不是冷冰冰的数据报表,而是一份带着温度感的分析报告——它把"老人误触屏幕"的痛点比作"拿着放大镜在雷区跳芭蕾",建议通过声纹交互解决的方案被具象成"给智能家居装上会呼吸的耳朵"。
让我震撼的是,这种改变远不止是效率提升这么简单。
当我们把用户访谈录音喂给DeepSeek时,发现它能在识别语义情绪的基础上,自动生成带着呼吸感的用户画像。
有位48岁的家庭主妇在访谈时随口抱怨"洗碗机说明书像天书",传统方法顶多标注个"需要简化操作流程",而DeepSeek却捕捉到她说话时三次无意识的叹气声,结合智能家居使用日志,推断出"中年女性对科技产品的焦虑源于自我价值认同缺失",进而建议在设置向导里加入情感化设计元素。
这种穿透表象直达人性底层的洞察力,让产品需求挖掘从"钓鱼"变成了"声呐探测"。
不过最颠覆认知的,是DeepSeek如何重构产品经理的知识体系。过去我们依赖的"五年经验直觉",正在被AI训练成更精准的决策模型。
某次讨论是否要砍掉某低频功能时,团队分成两派吵得不可开交。DeepSeek没有直接站队,而是默默生成了一张四维决策矩阵:横轴是用户价值,纵轴是开发成本,气泡大小代表战略协同度,颜色深度预示法律风险。
当看到那个悬在淘汰边缘的紫色气泡时,所有人突然达成共识——原来我们争论的不是功能存废,而是如何定义评估维度。
很多人担心,既然 deepseek这么强大,那产品经理在这种背景下该如何自处呢,我想说的是作为离技术最近一直与技术打交道的工种,我们要做的绝对不是逃避,而是补充自己的 AI 技能,毕竟现在各个企业都在用 AI 重塑业务,也需要大量的懂技术懂业务的产品人。
当然,这种技术狂欢背后也有甜蜜的烦恼。现在每次原型评审前,设计师都会幽怨地说:"求你别让DeepSeek出太多设计方案了,上次它给的渐变色方案让前端小哥哭晕在厕所。
"更"严重"的是,运营同事开始抱怨活动策划会变成了AI创意PK赛——上周某位95后运营居然让DeepSeek模仿李佳琦风格写了份带货剧本,结果直播时观众真的以为请到了明星助阵。
站在茶水间望着窗外霓虹时,我时常想起电影《她》里的场景。不过我们的故事没有科幻片的孤独感,倒像是突然多了个超级外脑。
前两天团队新来的实习生忐忑地问我:"会被AI取代吗?"我笑着指了指正在自动生成用户旅程图的屏幕:"看见那个正在标注'情绪低谷点'的粉色标记了吗?三年前我需要访遍50个用户才能找到这个洞察,现在DeepSeek把它变成了基础操作。我们要做的,是教会AI如何发现第51种情绪。"
玻璃幕墙外,城市夜景如星河流动。办公桌上的DeepSeek界面突然弹出提醒:"检测到您注视窗外超过37秒,需要来杯虚拟摩卡吗?"你看,它连产品经理的咖啡时间都重新定义了。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓