1.前言
之前我们为大家介绍过MCP SSE插件,它能够支持MCP-server在Dify平台上的调用,从而帮助Dify与第三方平台提供的MCP-server进行无缝对接。有些小伙伴提出了疑问:既然Dify可以通过MCP SSE插件调用其他平台的MCP-server,那么Dify的工作流或Chatflow是否也能发布为MCP-server,供其他支持MCP client的工具使用呢?今天,我们将为大家介绍一款Dify插件——mcp-server,它能够实现这一功能,即将Dify的工作流或Chatflow发布为MCP-server,供其他第三方工具调用。
插件名字叫做MCP-server,我们在dify插件市场可以找到这个工具
Mcp-server 是一个由 Dify 社区贡献的 Extension 类型插件。安装后,你可以把任何 Dify 应用转变成符合 MCP 标准的 Server Endpoint,供外部 MCP 客户端直接访问。它的主要功能包括:
-
• **暴露为 MCP 工具:**将 Dify 应用抽象为单一 MCP 工具,供外部 MCP 客户端(如 Cursor、Claude Desktop、Cline,Windsurf、Dify 等)调用。
-
• **利用 Dify Endpoint 功能:**用户创建应用 Endpoint 后,将获得唯一的 URL,外部 MCP 客户端可直接通过该 URL 连接。
-
• **提供 MCP 服务:**插件在 Dify 插件环境中自动启动 HTTP 服务,基于 HTTP 和 SSE 协议,高效处理外部 MCP 客户端请求,包括协议握手、能力发现以及工具调用。
2.如何使用
我们在插件市场上安装好这个插件。安装好后可以在插件列表中查找到,如下图。
image-20250417131032122
env IP地址修改
接下来我们需要配置MCP-server,这个配置的地方我们需要注意,既然这个工具是对外提供服务的,那么我们就希望在互联网或者局域网实现访问。所以我们需要修改一下dify .env文件的配置,找到你本地电脑上的.env文件,这里我们方便讲解就拿官方的
https://github.com/langgenius/dify/blob/main/docker/.env.example 给大家介绍一下修改的地方
我们搜索到.env.example 文件 1001 行找到如下配置
我们需要把 EXPOSE_PLUGIN_DEBUGGING_HOST 、ENDPOINT_URL_TEMPLATE 这2个地方的localhost 换成你的局域网IP或者公网IP
我的公网地址是14.103.204.132
原地址
PLUGIN_DEBUGGING_HOST=0.0.0.0
PLUGIN_DEBUGGING_PORT=5003
EXPOSE_PLUGIN_DEBUGGING_HOST=localhost
EXPOSE_PLUGIN_DEBUGGING_PORT=5003
# If this key is changed, DIFY_INNER_API_KEY in plugin_daemon service must also be updated or agent node will fail.
PLUGIN_DIFY_INNER_API_KEY=QaHbTe77CtuXmsfyhR7+vRjI/+XbV1AaFy691iy+kGDv2Jvy0/eAh8Y1
PLUGIN_DIFY_INNER_API_URL=http://api:5001
ENDPOINT_URL_TEMPLATE=http://localhost/e/{hook_id}
修改后地址
PLUGIN_DEBUGGING_HOST=0.0.0.0
PLUGIN_DEBUGGING_PORT=5003
EXPOSE_PLUGIN_DEBUGGING_HOST=14.103.204.132
EXPOSE_PLUGIN_DEBUGGING_PORT=5003
# If this key is changed, DIFY_INNER_API_KEY in plugin_daemon service must also be updated or agent node will fail.
PLUGIN_DIFY_INNER_API_KEY=QaHbTe77CtuXmsfyhR7+vRjI/+XbV1AaFy691iy+kGDv2Jvy0/eAh8Y1
PLUGIN_DIFY_INNER_API_URL=http://api:5001
ENDPOINT_URL_TEMPLATE=http://14.103.204.132/e/{hook_id}
我公网服务器地址修改截图如下
修改之后,记得重启dify
chatflow案例配置介绍
上面配置完成并重启好dify工作流后。我们进入dify工作台-插件-MCP-server 配置界面
默认这里是空的,我这里是之前配置好的,所以显示了2个。
上期文章中我们使用了dify 实现了一个PPT chatflow的制作,我们就拿上期文章的案例来做成一个mcp-server对外提供服务。
关于上期文章大家可以看这个《dify案例分享-借助插件 3 步打造惊艳 PPT 生成工作流!》
点击右上角+号,弹出配置。
在 mcp-server 插件的配置页面,填写以下内容:
-
• **端点名称:**端点 名称。
-
• **App:**选择要发布为 MCP Server 的 Dify 应用。
-
• **App Type:**应用类型(Chat 或 Workflow)。
-
• **App Input Schema:**定义应用的输入参数,帮助外部系统理解与该应用的交互方式,格式为 JSON。可以参考我下面的截图
image-20250417132526689
其中APP 应用里面可以从我们之前dify制作好的工作流选择我们需要发布的应用(Chat 或 Workflow),我们这里选择“儿童故事绘本-ppt chatflow” 如下图
image-20250417132624826
最后一个App Input Schema 稍微麻烦点,大家可以看参考我下面的
{
"name":"pptchatflow",
"description":"儿童故事绘本-ppt chatflow",
"inputSchema":{
"title":"儿童故事绘本-ppt chatflow",
"type":"object",
"properties":{
"prompt":{
"title":"儿童故事绘本-ppt chatflow",
"description":"本工作流流(chatflow)可以实现大语言模型创建内容后调用agent 从而实现PPT的制作功能",
"type":"string"
}
},
"required":[
"prompt"
]
}
}
其实关键点在 properties 和required 属性,这2个值就是你对外提供工作流的输入参数。那么具体填什么值呢? 和你工作流输出参数有关。我们回到我的儿童故事绘本-ppt chatflow 工作流中
image-20250417133107545
我这里就一个输入参数叫做“prompt”,所以我们添加的 properties 和required 属性 值就是 prompt。这样大家就能理解了吧。
完上传配置点击保存按钮,这个时候我们就可以看到如下面画面
image-20250417133243597
显示服务正常,这样MCP-server对外提供服务了。 那么问题来了,我怎么 证明他可以使用呢?
它对外提供2个地址 get 和post请求。地址如下:
http://localhost/e/56uageiwt2ezf8e9}/sse
http://localhost/e/56uageiwt2ezf8e9}/messages/
这地方其实是有坑的。还记得前面提到我们修改.env文件把localhost 改成公网地址14.103.204.132,为什么这地方显示不出来呢?
我当时也是找了半天的原因。这个地方如果显示localhost 其实可以不用去管它。我们可以重新修改地址localhost 换成IP。
另外还有一个地方就是生产的地址56uageiwt2ezf8e9} 后面是有一个右边单括号的”}”的,这里我们也是需要去掉。修改后的地址如下
http://14.103.204.132/e/56uageiwt2ezf8e9/sse
http://14.103.204.132/e/56uageiwt2ezf8e9/messages/
我们把上述地址get 请求地址在浏览器上输入验证一下,确保客户端网络能够访问这个MCP-server
image-20250417133929184
出现了
event: endpoint
data: messages/?session_id=a21bbc543af2402f902850ec34433ae4
这个时候证明我们网络是通的,对外是可以访问的。
Cherry Studio验证及测试
接下来我们找一个支持mcp-client工具,就拿Cherry Studio验证吧。打开电脑上安装的Cherry Studio 升级最新版本(建议)我的版本是
1.2.4
image-20250417134335249
我们找到 mcp服务器配置-点击添加服务器
image-20250417134415684
这个配置SSE 非常简单,填写名称和 sse URL地址即可
image-20250417134525835
配置完成后点击保存。
回到cherry studio 聊天对话窗口,我们选择一个带有function call的模型,这里我们就选择 火山引擎提供的deepseek-v3模型,勾选MCP- server
image-20250417134733272
聊天窗口中我们输入“
喜羊羊与灰太狼
image-20250417134822901
模型会调用 名称叫做pptchatflow 的,我们点开它 确实是调用了我们dify 之前做的额PPT生成的工作流了。
image-20250417134904534
PPT 没给我提供下载,我继续
image-20250417134951935
他也给我把PPT地址提供链接显示出来了。 这个我们需要注意的事情,我们点击链接其实是下载不了的。为什么呢?
可能小伙伴会问了, 因为我们之前的案例PPT 生成在容器内部,DIFY安全方面的考虑第三方链接是下载不到这个PPT的,如果想解决它怎么办? 聪明的小伙伴已经想到了,在上期工作流中我们生成的PPT可以借助于第三方平台,比如腾讯COS 实现PPT 的上传,然后返回PPT公网访问的下载链接地址,这样不管是在DIFY 平台上还是第三方平台上就可以实现这个链接地方访问和下载了。感兴趣小伙伴可以参考我们之前的文章来实现。这里我们就不展开了。
workflow案例配置介绍
前面给大家介绍了是chatflow配置,接下来我们在介绍一下workflow的配置,这个配置和上面的非常类似,区别地方就是我们选择
**App Type:**应用类型( Workflow)。
这里我们拿我之前的即梦AI绘画工作流给大家讲解。
这个地方重点其实还是App Input Schema
我的配置如下
{
"name":"Dream AI Painting",
"description":"本工作流主要是使用开源jimeng-free-api项目实现即梦AI逆向API 通过http请求整合实现dify工作流上即梦AI绘画功能",
"inputSchema":{
"title":"即梦AI绘画",
"type":"object",
"properties":{
"prompt":{
"title":"即梦AI绘画",
"description":"本工作流主要是使用开源jimeng-free-api项目实现即梦AI逆向API 通过http请求整合实现dify工作流上即梦AI绘画功能",
"type":"string"
}
},
"required":[
"prompt"
]
}
}
这个地方和上面一样,我也只有一个prompt 输入参数。
配置完成后效果如下
URL 地址和前面也是一样,这里就不在重复赘述。
最终对外提供的 URL 如下
http://14.103.204.132/e/boaavozuvj5w3dk9/sse
http://14.103.204.132/e/boaavozuvj5w3dk9/messages/
上面我们同样可以使用Cherry Studio验证及测试,具体配置就不详细展开,我们给大家看一下效果
image-20250417140124158
我们知道我之前做的即梦AI 绘画一次性返回4张图。 这里我们就借助第三方工具cherry studio 实现DIFY 工作流生成AI绘画的功能了。
魔搭社区SSE验证及测试
前几天魔搭社区已提供了一站式SSE 托管平台,我们接下来可以在这个平台上演示一下我们的即梦AI 工作流SSE
用账号登录魔搭社区,进入首页,点击右边“MCP广场”
点击MCP 实验场,进入 MCP Playground
我们点击配置按钮,添加MCP server
点击确定按钮完成保存设置。
回到试验场,我们就可以测试了。
同样它生成了4张风格不一样的图。
我在dify工作流中也能够看到魔搭社区MCP-client端发起了调用产生了调用记录。
以上我们就完成了魔搭社区SSE 和我们dify MCP-server 提供的即梦AI绘画工作流整合和调用了。
是不是非常简单,呵呵。
3.分享和体验地址
前面步骤教会大家如何配合和部署dify-mcp-server,有的小伙伴不想去折腾,我们这里也提供大家我制作好的mcp-server地址,方便大家体验和使用。当然感兴趣小伙伴最好还是自己去参考上面的文章增加搭建一下,体会很更深,也能很好的理解mcp-server和mcp-client
4.总结
今天主要带大家了解并实现了将 Dify 的工作流或 Chatflow 发布为 MCP - server,供其他第三方工具调用的功能。借助 Dify 社区贡献的 MCP - server 插件,实现了把 Dify 应用转变为符合 MCP 标准的 Server Endpoint 的过程。本次操作涉及到 Dify 平台的使用、MCP - server 插件的安装与配置,以及对工作流输入输出参数的理解和设置等知识。整个过程虽有一些小细节需要注意,但操作本身并不复杂,感兴趣的小伙伴可以去尝试。今天的分享就到这里结束了,我们下一篇文章见。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】