AI 是今年大火的一个话题,随着 ChatGPT 之类的一系列大模型开始流行以后,有不少的培训机构宣称这样的口号: “未来不会使用 AI 的人将会被淘汰”。我觉得这个观点本身并没有错,但是关键在于那些培训机构出于自身的利益,故意忽略了这句话成立的条件。真正的意思应该是:
在某些 AI 擅长的领域,不会使用 AI 加持自己工作的人将会被淘汰。
比如要求不高的人工客服、文案写手,甚至是简单的代码开发工作,用 AI 来完成能达到不错的效果,而对于门槛较高或跟人打交道的领域,比如做复杂的系统架构、心理咨询等等,这些 AI 就很难胜任。
那对于 AI 擅长的领域来说,它的本质还是属于工具,既然是工具,那么它的第一性原理就是提高生产效率,以前能做的事情,现在能用更短的时间、更少的人力来完成。这种问题往往已经有了现成的解决方案/规则,只需要借助 AI 帮你更方便地实现,比如:
-
你想写一段 SQL 语句,但是你对 SQL 语法并不熟悉,你可以把需求用自然语言描述出来,然后 AI 会帮你把自然语言转换成 SQL 语句。
-
你想搜索到某个文档的内容,你可以用自然语言描述你的需求,AI 会帮你搜索到相关的文档,并进行整合后给你相对准确的答案。
其实这些事情你也可以通过自己手动查阅资料来完成,但是 AI 可以帮你更快地完成。
在大模型已经流行的今天,AI 的使用门槛已经越来越低,使用 AI 来解决问题对大部分人来讲并不是什么难事,真正拉开人与人差距是利用 AI 去解决什么样的问题。
你可以给 ChatGPT 提问让它帮你翻译一段话,也可以让它解决一个垂直领域中的具体问题,不同的问题会将 AI 引导到不同的方向,从而直接影响到答案的质量。
而提问的内容,来源于你的知识储备,和对行业的理解,越专业的人,提出的问题往往信息量也越大,这样也更能把 AI 的能力发挥到极致。
所以,AI 对你的帮助到底有多大,一方面取决于你的领域 AI 是否擅长,另一方面取决于你自己的能力圈,当你的能力半径足够大,那么能撬动的 AI 的力量也就越大。
如果你所做的工作 AI 并不擅长,那么即使你不使用 AI 对你的影响并不大,你根本不会被淘汰。比如我现在的工作中,很多事情需要涉及到复杂的技术上下文,AI 并没有这些上下文信息,所以很多需求是 AI 无法完成的,不用 AI 对我的工作确实没有太大的影响。但与此同时,也有一些不太需要很多上下文的编码细节,我可以交给 AI 帮我实现或者分析 bug,提升工作的效率。
那么,还有一个问题是,会用 AI 的人就一定不会被淘汰吗?
在使用 AI 的时候我们固然需要学习一些应用层的知识,比如怎么组织合理的 prompt、怎么引导模型思考。但只会用 AI、没有专业深度的人在未来也会被淘汰。难的从来不是使用 AI,难的是在一个行业长期的深耕,积累自己的能力圈以及对领域的认知,这才是真正的核心竞争力。
曾经在 bobo 老师的知识星球看过一个帖子,说的是十年前塞班系统被淘汰了,那当年做塞班的人被淘汰了吗?
事实是并没有,相反,他们在开发塞班系统的时候积累了大量 C++ 的开发经验,对代码中的内存管理已经非常熟悉,这些经验放到 iOS 当年使用的 OC 语言当中也同样适用,这意味着相比新手能更容易地开发出稳定的应用。
同时,他们也是最早接触移动端开发的一群人,作为扎根行业多年的人,相比外人他们太清楚移动端互联网时代已经要到来了,于是有人开始做 iOS 独立开发,尝到了 iOS 应用商店的付费红利,有人拿着几倍于塞班开发的薪水,在移动端开发领域继续前进,并没有在那个时期被时代所淘汰。
同样,当 AIGC 新技术出现的时候,原本行业的积累也非常重要。因为抛开任何一个行业去谈 AIGC 都是没有意义的,只有对原本行业的认知足够深刻,才能清楚地知道哪些细节可以交给 AI 去做,哪些问题可以让 AI 解决,充分挖掘 AI 对于行业的价值。
所以,当 AI 大模型出现之后,往往是在行业里深耕的人能够最先适应 AI 时代的变化,而不是那些只会使用 AI 的人。
无论如何怎么说,先掌握ai,懂得ai的人一定是有竞争优势的,这句话放在计算机,互联网,移动互联网的开局,都是一样的道理,作者我也是耗费了好几夜在各个平台去搜索资料,把整理好的很多经验和知识去分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓