MCP失宠?谷歌重磅开源A2A协议 实现智能体间的自由“对话”

谷歌云正式宣布推出全新的开源协议Agent2Agent(A2A),旨在打破当前人工智能(AI)智能体之间的壁垒,实现不同厂商、不同框架构建的AI智能体之间的无缝协作与信息交换。这一举措标志着AI领域迈向更加开放、高效和智能的新时代。

图片

打破壁垒,实现智能体间的自由“对话”

随着企业对自主AI智能体的部署日益增长,如何让这些智能体在复杂的企业环境中协同工作,处理跨系统、跨应用的日常或复杂任务,成为了提升生产力的关键。然而,由于缺乏统一的标准,不同智能体之间往往难以有效沟通和协作,形成了一个个“信息孤岛”。

图片

作为一个开放协议,A2A为AI智能体之间的通信、安全信息交换和协同行动提供了一套标准化的方法。无论这些智能体是由哪家供应商开发,采用何种底层技术,只要遵循A2A协议,就能实现真正的多智能体场景,摆脱了传统上将智能体局限于单一“工具”的限制。

Agent2Agent Protocol by Google, explained visually: (and how it differs… |  Avi Chawla | 16 comments

MCP(模型上下文协议)用于工具和资源连接:通过结构化输入/输出来连接代理与工具、API 和资源。MCP重点在于传输的数据类型和传输协议的优化,去除function call的生态隔离;

A2A(代理间通信协议)用于代理协作:支持不同代理间的动态、多模态通信,无需共享记忆、资源或工具。A2A是model-level server级别的交流,重点在于multi-agent融合的算子结构,通过workflow或者链式化组合,以rules驱动multi-agent进行算子化。

图片

Agent2Agent(A2A)旨在让AI代理之间能够通信、共享信息,并在多种企业平台中协同操作。A2A补充了Anthropic的模型上下文协议(MCP),参考了Google在构建大规模代理系统中的经验,专为解决企业部署多代理系统面临的挑战而设计。它使开发者能创建可与任何支持A2A的代理互联的系统,并为企业带来标准化的代理管理方法,助力实现协作AI的巨大潜力。

图片

按Google的说法,A2A协议与MCP是互补而不替代关系,A2A负责解决Agent间的通信问题,MCP解决的是Agent与工具间的通信问题。

五大核心设计原则,打造强大可靠的互操作性基础

A2A协议在设计之初就秉持了五大关键原则,以确保其能够适应未来复杂多变的AI应用场景:

  • 拥抱智能体能力 (Embrace agentic capabilities)

    :A2A侧重于使智能体能够以其自然的、非结构化的方式进行协作,即使它们不共享内存、工具和上下文也能高效工作。

  • 构建于现有标准之上 (Build on existing standards)

    :该协议基于HTTP、SSE和JSON-RPC等流行的现有标准构建,这大大降低了企业将其集成到现有IT架构中的难度。

  • 默认安全 (Secure by default)

    :A2A在设计上就支持企业级的身份验证和授权,其安全性与OpenAPI的身份验证方案相当。

  • 支持长期任务 (Support for long-running tasks)

    :A2A具有高度的灵活性,可以支持从快速任务到需要数小时甚至数天才能完成的深度研究等各种场景。在整个过程中,A2A可以向用户提供实时的反馈、通知和状态更新。

  • 模态无关 (Modality agnostic)

    :考虑到智能世界不仅限于文本,A2A还支持包括音频和视频流在内的多种模态。

图片

A2A工作原理

A2A的工作原理是通过促进客户端Agent和远程Agent之间的通信来实现的。客户端Agent负责制定和传达任务,而远程Agent则根据这些任务采取行动,以提供正确的信息或执行相应的操作。在这个过程中,A2A协议有以下几个关键能力。

首先,Agent可以通过“Agent卡”来宣传它们的能力。这些“Agent卡”是以JSON格式存在的,它们能够让客户端Agent识别出哪个远程Agent最适合执行特定的任务。一旦确定了合适的远程Agent,客户端Agent就可以利用A2A协议与之进行通信,将任务分配给它。

然后,任务管理是A2A协议中的一个重要环节。客户端和远程Agent之间的通信都是围绕完成任务展开的。协议定义了一个“任务”对象,这个对象具有自己的生命周期。

对于一些简单的任务,可能可以立即完成;而对于一些复杂的、长期的任务,Agent们可以相互沟通,以保持对任务完成状态的同步。当任务完成时,其输出被称为“工件”。

图片

最后,A2A还具备用户体验协商的功能。每条消息都包含“部分”,这些部分是完整的内容片段,例如,生成的图像。

每个部分都有指定的内容类型,这使得客户端和远程Agent能够协商所需的正确格式,并且明确包括用户界面能力的协商,比如iframe、视频、网络表单等。这样,A2A就能够根据用户的需求和设备的能力,提供最佳的用户体验。

图片

A2A实现客户端代理与远程代理之间的任务通信:前者负责发起任务,后者负责执行任务。核心能力包括:

  1. 能力发现:通过 JSON 格式的“代理卡片”公开功能,便于选择合适的代理协作。

  2. 任务管理:围绕任务对象协作,支持即时或长时间运行任务,输出结果称为“工件”。

  3. 协作通信:代理可交换上下文、回复、工件及用户指令等信息。

  4. 体验协商:消息由多个“部分”组成,支持多种内容类型,便于适配用户界面能。

图片

A2A 的本质:
1️⃣将 MCP 的核心原则(能力描述而非显式指令)应用和扩展到了 AI 智能体 (Agent) 之间的交互。
2️⃣关注点: 不仅仅是智能体如何使用“工具”,更是智能体之间如何相互发现 (discovering each other)、理解彼此的能力,并自主协商如何协作 (how they collaborate)。

A2A的挑战:
1️⃣状态管理 : 在多智能体系统中保持状态一致性、处理冲突和部分失败很复杂。
2️⃣推理成本 : 智能体每次协商交互都需要消耗计算资源、Token 和时间,在多智能体系统中成本会累积,需要高效的优化策略。
3️⃣安全性 : 智能体间交互引入了新的漏洞层面,需要强大的认证、授权、审计追踪等机制,且不能破坏系统的灵活性。
4️⃣构建难度: 目前用 MCP 和 A2A 构建规模化、可靠的系统仍具挑战。

图片

通过 A2A 协作,招聘软件工程师的流程可大大简化。在像 Agentspace 这样统一的界面中,用户(如招聘经理)可以指派自己的代理,根据职位描述、地点和技能要求寻找候选人。该代理会与其他专业代理协作,获取合适人选。用户收到推荐后,可进一步指示代理安排面试,从而简化人才筛选流程。面试结束后,还可调用其他代理完成背景调查。这只是 AI 代理跨系统协作以招聘合格候选人的一个典型例子。

A2A协议的发布得到了超过50家技术合作伙伴和领先服务提供商的支持与贡献。其中包括Atlassian、Box、Cohere、Intuit、Langchain、MongoDB、PayPal、Salesforce、SAP、ServiceNow、UKG和Workday等技术巨头,以及Accenture、BCG、Capgemini、Deloitte、KPMG和PwC等知名咨询公司。众多合作伙伴纷纷表示,A2A协议将有助于推动AI在企业中的更广泛应用,实现更高效、更智能的工作流程。

图片

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值