在互联网的浪潮中,AI人工智能领域无疑是最引人注目的风口。AI产品经理,作为这一领域的新兴岗位,以其高薪、低压力、无年龄限制等优势,吸引了众多互联网从业者的目光。随着GPT等AIGC工具的兴起,AI产品经理的市场需求日益增长。
AI产品经理需不需要懂算法?
AI产品经理不必像算法工程师那样精通算法,但必须能够与算法工程师有效沟通,了解如何管理AI项目,协调项目资源。
成功转行AI产品经理的三大能力:
-
产品经理能力:市场调研、需求分析、产品设计、用户体验优化等。
-
AI基础技术:Python、机器学习、深度学习等。
-
主流AIGC产品研究:深入理解市场上的主流AI产品。
AI产品经理的学习清单
一、AI产品经理全局讲解
-
AI产品架构全景图:从AI产品经理的视角全面了解人工智能。
-
AI产品全岗位分析:岗位分类、热招岗位分析、招聘需求剖析。
-
AI产品经理个人规划:能力模型、学习路径、职业规划。
二、Python编程
-
Python基础与进阶功能:从二进制世界到数据类型、基础数学运算。
-
面向对象编程:函数、递归问题、文件操作、类和对象。
-
通信与爬虫:网络通信协议、HTTP协议、socket协议、正则表达式。
-
实战教学:爬虫、网络聊天室、电子表格处理、PDF文件读取、算法代码实操。
三、机器学习
-
机器学习基础:概述、数学统计学基础、模型基础技术名词。
-
机器学习类型:有监督学习、无监督学习、半监督学习、强化学习。
-
机器学习流程:数据预处理、特征工程、模型验收。
-
七大常用算法精讲:K邻近算法、线性回归、逻辑回归等。
-
机器学习案例:用户推荐系统、价格预测模型、银行风控审查。
四、深度学习
-
神经网络:感知机、多层神经网络、RBF神经网络。
-
图像识别与卷积神经网络:图像识别、卷积神经网络技术原理、手写数字识别。
-
NLP与循环神经网络:自然语言处理、循环神经网络、生成式大语言模型。
-
AI绘画与生成对抗网络:AI绘画、生成对抗网络、Diffusion模型。
-
深度学习案例讲解:人脸识别、文本分类、自动驾驶。
五、AI产品设计
-
竞品调研:竞品选择与定位、功能与特性分析、市场定位与用户需求。
-
需求分析与PRD文档:需求收集、功能需求定义、非功能需求定义、用例描述与场景分析、PRD文档撰写。
-
模型训练数据准备:数据收集与清洗、标注与处理、增强与变换、数据划分。
-
模型的构建与验收:模型选择与设计、特征工程、训练与优化、评估与验证。
-
工程开发及产品上线运营:产品全局验收、发布与部署、监控与维护、优化与迭代。
六、AI产品项目管理
-
敏捷项目管理:敏捷管理理念、Scrum框架、需求分析与拆解、迭代与增量、团队协作与沟通。
-
瀑布模型管理:需求定义与规划、系统设计与实现、测试与验收、维护与版本管理。
-
项目进度管理:进度计划与安排、跟踪与控制、延误分析与应对、报告与沟通。
-
项目管理工具:项目管理软件概览、Teambition与Jira的配置与使用。
七、AI产品项目实操
-
“AI奢侈品估价”项目:竞品调研、需求分析、原型图和PRD文档、模型训练数据准备、产品评审。
-
更多AI案例精讲:个性化推荐系统、用户评论意向书预测、智能客服产品。
八、AI产品经理面试求职
-
岗位定位分析:个人能力与经验剖析、AI产品岗位解析、求职方向定位。
-
简历修改和辅导:个人简介润色、工作经验修改、增加AI项目经验。
-
岗位推荐和面试辅导:相关岗位内推、面试技巧、一对一模拟面试。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。