你身边的AI产品经理,陪你解决每一个真实问题。
Qwen3 终于更新了,等得我花都快谢了。
昨晚本来打算坚守到发布,但最终还是熬不住睡着了。结果一早醒来,发现 Qwen3 已经在凌晨 6 点发布,社交媒体上早已铺天盖地,全是关于参数升级的消息。
虽然从字面实力来看这次升级非常强悍,但对我来说,第一时间的体感并没有“质变”的惊艳。毕竟我是个讲究实操体验的人——“耳听为虚,手敲为实”,只有真正上手试过,才能分辨它到底强在哪儿。
我的关注点:Vibe Coding 场景
最近我专注于“Vibe Coding”领域,也就是那种 “言出法随,口喷需求就能生成功能” 的体验。我非常期待 Qwen3 能在这方面带来质的飞跃,尤其是在替代 Claude 这类高价模型(且伴随数据安全顾虑)时,是否能成为更具性价比的选择。
生成效果演示视频
我用 chat.qwen.ai在线跑了一个代码示例,渲染出来的效果让我眼前一亮:不仅前端效果不错,竟然还能支持实现 在线音乐播放功能! 这说明 Qwen3 在代码生成与理解能力方面确实下了不少功夫。
在线Qwen3生成效果截图
如果你对 Prompt 编写感兴趣,别急,我会在后文中分享我的测试提示词,欢迎你也一起来试试效果。
本次我将围绕几个高频使用场景,对 Qwen3 进行实测与评价:
-
前端页面视觉效果构建
-
服务端 Python 脚本功能编写
-
根据产品功能文档完成整个项目开发流程
在开始正式测评之前,也给大家同步下本次 Qwen3 发布的模型参数信息,包括两款MoE模型:Qwen3-235B-A22B(2350多亿总参数、 220多亿激活参),以及Qwen3-30B-A3B(300亿总参数、30亿激活参数);以及六个Dense模型:Qwen3-32B、Qwen3-14B、Qwen3-8B、Qwen3-4B、Qwen3-1.7B和Qwen3-0.6B。
Qwen3模型家族不同尺寸的模型开源图
模型排排站,Qwen3全家桶开源上线,大小通吃不藏私!
无论你是开发者、科研人员还是普通用户,Qwen3 都能满足你的需求!
不同尺寸的模型能力分布图
了解完以上的内容之后,我们就开始正式的测评了,总共 3 个场景:
-
Round 1:前端页面视觉效果构建;
-
Round 2:服务端 Python 功能脚本编写;
-
Round 3:读取产品功能文档完成整个项目;
在视觉效果层面上不做直接的评分结果,只对于布局理解和功能实现进行评价,看 Python 功能主要以是否能够正常运行为准,功能文档完成需求实现主要以对话轮次实现和最终是否可用。
本次 Vibe Coding 的框架使用的是 VsCode + Cline,而 Qwen3 模型能力用的是来自于阿里云百炼大模型平台提供的 Qwen3-235B-A22B ,运行过程中还是相当快速且丝滑的,在本文中就不再重复赘述了,配置好后的信息长这样:
参考配置信息
Round 1 :前端页面视觉效果构建
主要需求:构建一个由前端界面搭建的 OS,能够在命令行中进行交互。
先说结论:首先必须要提的一点是“在阿里云百炼上调用的 Qwen3 响应速度真的非常快”, Qwen3 能够较好的支持复杂的提示词下的样式设计和遵循,并且在风格上也可以做到与 Claude 类似的风格渲染,同时里面的音频链接播放也能够支持调用,包括在页面上的小游戏生成做出来的效果都还不错。
下面是我提供的 Prompt 提示词:
【需求描述】
创建一个像素风格的虚拟终端操作系统网页应用,要求:
1. 主题风格:绿色荧光线条+像素网格背景(#00ff00主色调)
2. 核心功能:
- 支持命令行交互(含命令历史浏览)
- 内置音乐播放器(支持指定URL音频)
- 贪吃蛇游戏窗口(可拖动/缩放)
- 文件系统模拟(包含README.txt等虚拟文件)
- 系统信息展示
3. 特殊效果:
- 动态光晕文字效果
- ASCII艺术字LOGO(最终版本需使用"Qwen 3"字样)
- 像素输入光标闪烁效果
【具体参数】
1. 页面标题:Qwen 3 OS
2. 音频资源:
- 歌曲名称:网易云测试曲
- 链接地址:https://er-sycdn.kuwo.cn/fbe9667cb9948ffbcfaf6b0a7ef1ac6b/68104434/resource/30106/trackmedia/M500003MhhC22KafA8.mp3
3. ASCII LOGO设计:包含inhai.wiki的ASCII艺术字LOGO。
4. 可用命令列表:
- help:显示帮助信息
- playmusic:播放背景音乐
- stopmusic:停止音乐
- clear:清空屏幕
- listfiles:列出虚拟文件
- readfile [filename]:读取文件内容
- sysinfo:显示系统信息
- launchsnake:启动贪吃蛇游戏
【完整实现要求】
1. 前端技术栈:
- HTML5/CSS3原生实现
- JavaScript DOM操作
- 响应式全屏布局
2. 关键元素:
- 终端容器(terminal-container)
- 输出区域(output)
- 命令行输入框(commandInput)
- 游戏窗口(game-frame)
- 隐藏音频播放器(musicPlayer)
3. CSS特效:
- 径向渐变背景(radial-gradient(#003300 1px, #000 2px))
- 边界ASCII边框(████████...伪元素)
- 文字发光动画(glow-text类)
- 光标闪烁效果(caret-color)
【扩展功能实现】
1. 拖拽窗口功能:
javascript
(() => {
let pos1 = 0, pos2 = 0;
const header = document.querySelector('.game-header');
// 实现mousedown/mousemove事件监听...
})();
2. 贪吃蛇游戏逻辑:
- 蛇体碰撞检测
- 食物生成算法
- 方向控制(↑↓←→/SPACE键)
- 分数系统
3. 虚拟文件系统:
javascript
const fs = {
files: {
'README.txt': `Qwen 3 OPERATING SYSTEM\nVersion 1.0 (Beta)...`,
'credits.txt': 'Developed by Qwen Team 2023',
'system_info.txt': `BIOS Version: Qwen-OS-BIOS-1.0...`
}
【开发注意事项】
1. 跨域限制:音频资源可能存在跨域访问问题,建议部署时使用代理
2. 浏览器兼容:需使用支持Web Audio API的现代浏览器
3. 扩展建议:可通过添加更多虚拟文件和游戏来增强系统完整性
(请注意,提示词中的音乐链接有失效时间的,请在测试的时候可以重新修改音乐链接)
Round 2 :服务端 Python 功能脚本编写
主要需求:上传一个 Excel 表格进行数据自动分析,给出分析结果。
先说结论:数据分析全自动也解决了,不仅自动安装了正确的依赖包,在数据格式读取和清洗解析的时候,反复自我纠正并且最终跑通了整个数据统计,虽然维度目前它仅仅提供了两个方向,以及没有自动支持中文格式的字体显示,但是我觉得这是一个非常棒的开始,是可以通过二次修正去不断变得更好的。
而我的提示词也就只有一句话:
“读取一下这个数据表,给我写个python脚本分析一下,从多个维度分析,画出图来。”
下面是提供Qwen3去分析的数据截图:
小红书分析笔记数据示例
Round 3 :读取产品功能文档完成整个项目
主要需求:根据之前小红书 cookie 获取的项目,然后读取需求文档进行复现一个项目。
先说结论:左边这个浮窗是 Qwen3 基于我提供的需求文档生成的,我看到能够正确拿到这个结果,我就已经深深的震撼了,真的进步非常大!虽然这个样式上还有需要优化的空间,但是我们这个只是让模型去一次性读取我们需求的产物啊,我多轮调试后还是很有希望可以达到 Claude 生成的效果了!!太棒了。
小红书Cookie获取器已经复现成功
而我的提示词就只有一句话:
“读取一下这个需求文档,给我实现一个浏览器插件”
需求文档:
# 小红书Cookie获取器功能需求文档
## 项目概述
小红书Cookie获取器是一个Chrome浏览器扩展程序,旨在帮助用户快速获取并复制小红书网站的Cookie信息。该扩展采用现代化的Apple风格UI设计,支持亮色/暗色主题切换,具有可拖拽功能,为用户提供简洁、美观且实用的工具。
## 核心功能需求
### 1. Cookie获取与展示
- 自动检测并获取小红书域名(xiaohongshu.com)下的所有Cookie信息
- 将获取的Cookie格式化为标准字符串格式(name=value; name=value)
- 在扩展弹出窗口和网页内嵌悬浮窗中同时展示Cookie信息
- 显示获取的Cookie数量和状态信息
### 2. 用户交互功能
- 提供一键复制功能,将Cookie信息复制到剪贴板
- 复制操作后显示成功状态反馈
- 支持通过扩展图标点击打开弹出窗口
- 在小红书网站页面自动显示悬浮窗
### 3. 界面定制功能
- 支持亮色/暗色主题切换,适应不同使用环境
- 悬浮窗支持拖拽定位,带有磁吸效果
- 悬浮窗可关闭/显示切换
- 响应式设计,适应不同屏幕尺寸
## 技术实现细节
### 1. 扩展架构
- **manifest.json**: 扩展配置文件,定义权限、资源和行为
- **background.js**: 后台服务脚本,处理Cookie获取逻辑
- **popup.html/js**: 扩展弹出窗口界面和交互逻辑
- **content.js/css**: 网页内容脚本,实现悬浮窗功能
- **images/**: 扩展图标资源
### 2. 权限需求
- `cookies`: 读取浏览器Cookie数据
- `activeTab`: 访问当前活动标签页
- `scripting`: 执行内容脚本
- `sidePanel`: 支持侧边栏功能
- 主机权限: `*://*.xiaohongshu.com/*`
### 3. 数据流程
1. 用户访问小红书网站时,content.js自动注入并创建悬浮窗
2. 用户点击扩展图标时,popup.js加载并显示弹出窗口
3. 获取Cookie请求从popup.js或content.js发送到background.js
4. background.js使用chrome.cookies API获取Cookie数据
5. 获取的数据返回给请求源,并在界面上展示
6. 用户点击复制按钮时,将数据复制到剪贴板
### 4. 界面实现
- 使用现代CSS特性(如backdrop-filter)实现毛玻璃效果
- 采用Flex布局实现响应式设计
- 使用CSS变量实现主题切换
- 添加平滑过渡动画提升用户体验
- 实现拖拽功能,带有边缘磁吸效果
## 用户体验设计
### 1. 视觉设计
- 采用Apple风格设计语言,简洁现代
- 主色调使用小红书品牌色(#ff2442)
- 圆角设计和阴影效果增强立体感
- 毛玻璃效果提升视觉质感
- 动画过渡效果增强交互体验
### 2. 交互设计
- 一键复制功能,减少操作步骤
- 状态反馈清晰,操作结果直观
- 可拖拽定位,用户可自定义位置
- 主题切换适应不同使用环境和个人偏好
- 悬浮窗可关闭,不干扰正常浏览
### 3. 可访问性
- 颜色对比度符合WCAG标准,确保文本可读性
- 状态信息清晰展示,避免用户困惑
- 按钮尺寸合理,易于点击
- 支持键盘操作
## 安全与隐私
### 1. 数据处理原则
- 所有数据处理完全在用户浏览器本地进行
- 不向任何外部服务器发送数据
- 不存储任何用户数据
- 仅在用户访问小红书网站时激活
### 2. 权限最小化
- 仅请求必要的浏览器权限
- 仅访问小红书域名下的Cookie
- 不读取或修改其他网站数据
## 安装与分发
### 1. 安装方式
- Chrome网上应用店发布(如已上架)
- 开发者模式本地安装(适用于开发和测试)
### 2. 兼容性
- 支持Chrome浏览器最新版本
- 支持基于Chromium的浏览器(如Edge、Brave等)
- 适配不同操作系统(Windows、macOS、Linux)
### 3. 更新维护
- 版本号清晰标识(当前版本:1.0)
- 支持通过Chrome商店自动更新
## 许可与归属
### 1. 开源协议
- 采用自定义非商业开源协议
- 允许非商业目的使用、复制、修改和分发
- 禁止商业用途,除非获得明确书面许可
### 2. 版权信息
- 版权所有 © 2025 AI产品银海
- 保留所有权利
此外,Qwen3 在模型原生层面就很好地支持了 MCP 工具的调用能力。
接下来我也计划持续探索 Qwen-Agent,进一步释放 Qwen3 在 Agent 能力方面的潜力。Qwen-Agent 内部集成了工具调用模板和工具调用解析器,能够大幅降低代码实现的复杂度,提高开发效率。
未来,我们会围绕具体的增长型业务场景深入研究和应用这套体系。如果你对这个项目感兴趣,不妨提前了解一下这个 Qwen-Agent 的项目地址:https://github.com/QwenLM/Qwen-Agent
以上就是今天的全部分享,总的来说,Qwen3 这一轮的迭代让我在 AI 编程的方向上看到许多令人惊喜的突破。当然,其他模块和领域仍有不少值得深入挖掘的内容,还需要我继续琢磨、实践。我是银海,你身边的AI产品经理,陪你解决每一个真实问题,我们下次再见~
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓