Qwen3值不值得普通用户本地部署?3个落地场景,30道题,300条回答,10模型大混测,豆包AI打分!

前几天阿里发布了Qwen3,这所有消息里,最吸引我的一条是:

Qwen3-4B可追平上代开源超大杯Qwen2.5-72B

没错,作为一个单纯的使用者,我对这次Qwen3的小模更感兴趣。

Qwen3-235B-A22B虽然说性能也强,登顶全球开源榜首,瑞思拜,但我本地部署不了呀。要说直接线上用,对最近集齐了GPT、Claude、Gemini御三家+Cursor会员的我来说,吸引力也不大。

而小模性能的提升,意味着个人本地部署可行性的提升。能本地部署就意味着数据离线私有化和无限量的tokens,成功勾起了本4090用户的兴趣。

但这得有个前提:Qwen3小模的性能真的够看。

因为首先DeepSeek蒸馏的那几个模型它确实不是DeepSeek,其次能部署到消费级显卡上的几个模型表现是真的挺一般,相比之下还不如用API呢。

所以,进入今天的主题,咱们看看Qwen3的小模到底咋样。


首先声明:我这次的测试场景比较主观,并不是严肃测评。相关的评分是由AI(Doubao-1.5-thinking-pro)给出,娱乐一下。

场景方面,我基于自己的使用场景选了三个,我觉得应该不小比例的普通工作党跟我的场景近似:

  1. 对于带有一定目的性的文案的审查和修改。

    测试题目是用了10条存在问题的淘宝好评文案。

  2. 对内容的总结和理解。

    测试题目是在网上随机选取的10篇文章。

  3. 基本问答下的逻辑和计算能力。

    测试题目是在弱智吧训练集中随机选取的10个问题(带答案)。

参与测试的大模型一共10个:

  • 6个是我通过Ollama在本机部署的,分别是:

    qwen3:8b、qwen3:14b、qwen3:32b、qwen3:30b-a3b、deepseek-r1:8b、deepseek-r1:32b

  • 4个是线上API接入,分别是:

    QwQ-32B、GLM-4-Flash、DeepSeek-V3、Grok-3

裁判是Doubao-1.5-thinking-pro:

  • 前两个场景,它会站在上帝视角,浏览所有选手回答后进行打分

  • 弱智吧测试题,会根据标准答案进行打分

测试环境,本来准备使用CherryStudio,但后来发现回答同一个问题时模型之间会相互抄作业,所以最后还是使用了多维表格。

图片

图片

正好最后的完整测试题目和选手回答也方便放出来。


下面是正式的测试结果。

各10题,平均分就是求和分值除以10。

第一卷 文案分析和修改:

图片

得分:

图片

Qwen3确实表现不俗,第一卷就被32B拿了榜首。

之前DeepSeek蒸馏的两个模型——我说的也没骗人吧——排名比较靠后。

免费调用的GLM-4-Flash遗憾垫底。但为它说句公道话,你很难找到跟它一样免费不限量且高并发的API了。

第二卷 文章总结和感悟:

图片

得分:

图片

QWQ-32B拔得头筹。

DeepSeek-V3稳居第二。

上一场第一名Qwen3:32B本次名列第三。

DeepSeek蒸馏的32B(其实蒸馏的也是千问),上升到第四,8B仍然落后。

GLM-4-Flash依旧陪跑。

第三卷 弱智吧答题考试:

图片

得分:

图片

DeepSeek-V3依旧强悍(本次使用的是0324版本)。

Qwen3:14B这次怒拿第二名,32B第三,也是优等生。

DeepSeek蒸馏8B遗憾垫底,32B倒数第三。

GLM-4-Flash在弱智吧上扳回一城,保住了颜面。

最终测试结果:

图片

DeepSeek-V3第一名。

Qwen3:32B第二名。

QWQ-32B出乎我的意料拿到第三名。

Qwen3:30B-A3B本来我寄予厚望,不过在这几项测试上意外爆冷。

如果根据这个结果,90及以上显卡的朋友本地部署建议选择Qwen3:32B,稍差一些的14B也是不错的选择,8B也会强过之前的DeepSeek蒸馏版本。


以上完整测试问题和结果可查看链接:

https://ilovezhiwai.feishu.cn/wiki/HThDwnX0FiyTIakyDe9c2z99nef?from=from_copylink

再次重申:本测试既不科学也不严谨,仅供逗乐。请不要在严肃领域使用本次测试结论。

祝大家五一假期愉快!

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值