什么是大模型开发?大模型开发需要学什么(非常详细)

一、 学习大模型的入门知识

深度学习基础知识:了解深度学习中的基本概念、算法和模型,包括神经网络、卷积神经网络、循环神经网络等。

编程能力:掌握至少一种编程语言,如Python、C++等,熟悉常用的深度学习框架,如TensorFlow、PyTorch等。

数学基础:具备高等数学、线性代数、概率论与数理统计等基础知识,以便更好地理解深度学习算法和模型。

机器学习基础:了解机器学习中的基本概念、算法和模型,如分类、回归、聚类等。

数据处理能力:熟悉数据处理的基本流程和方法,如数据清洗、数据预处理、数据可视化等。
以下是一个学习大模型的学习路线:

学习深度学习基础知识:了解深度学习的基本原理、算法和模型,包括神经网络、卷积神经网络、循环神经网络等。

学习编程语言和深度学习框架:掌握至少一种编程语言和深度学习框架,如Python和TensorFlow或PyTorch。

学习数据处理和分析:熟悉数据处理的基本流程和方法,如数据清洗、数据预处理、数据可视化等。

学习机器学习和统计知识:了解机器学习中的基本概念、算法和模型,如分类、回归、聚类等。同时,掌握常用的统计方法,如假设检验、方差分析等。

学习大模型的原理和应用:了解大模型的原理和应用场景,如自然语言处理、计算机视觉等。同时,掌握大模型的训练和部署方法。

实践项目和案例分析:通过实践项目和案例分析,加深对大模型的理解和应用。可以尝试使用大模型解决实际问题,如文本分类、图像识别等。

持续学习和跟进:随着技术的不断发展,大模型的应用场景和算法也在不断更新和完善。因此,需要持续学习和跟进最新的技术和应用。

二、学习大模型需要掌握以下Python知识

基础语法:了解Python的基本语法,包括变量、数据类型、控制流、函数等。

数据处理:熟悉Python中的数据类型,如列表、元组、字典、集合等,并掌握它们的基本操作。同时,了解如何使用Python进行数据处理,如数据清洗、数据预处理等。

科学计算:熟悉Python中的科学计算库,如NumPy、Pandas等,以便进行数值计算和数据分析。

机器学习库:了解并掌握常用的机器学习库,如Scikit-learn、TensorFlow、PyTorch等,以便使用大模型进行机器学习任务。

深度学习框架:熟悉并掌握深度学习框架,如TensorFlow、PyTorch等,以便进行大模型的训练和部署。

版本控制和代码调试:了解并掌握版本控制工具(如Git)和代码调试技巧,以便更好地管理和调试代码。

三、TensorFlow框架

TensorFlow是一个开源的机器学习库,由谷歌大脑团队开发。它被广泛应用于各类机器学习算法的编程实现,包括深度神经网络和其他神经网络。TensorFlow采用数据流图(data flow graphs)的形式,节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。

TensorFlow拥有多层级结构,可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究。同时,TensorFlow也拥有包括TensorFlow Hub、TensorFlow Lite、TensorFlow Research Cloud在内的多个项目以及各类应用程序接口(Application Programming Interface, API)。

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。它既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络。

四、PyTorch框架

PyTorch的主要特点包括:

张量计算能力:PyTorch提供了一个多维数组(也称为张量)的数据结构,该数据结构可用于执行各种数学运算。它也提供了用于张量计算的丰富库。

自动微分:PyTorch通过其Autograd模块提供自动微分功能,这对于梯度下降和优化非常有用。

动态计算图:与其他深度学习框架(如TensorFlow的早期版本)使用静态计算图不同,PyTorch使用动态计算图。这意味着图在运行时构建,这使得更灵活的模型构建成为可能。

简洁的API:PyTorch的API设计得直观和易于使用,这使得开发和调试模型变得更加简单。

Python集成:由于PyTorch紧密集成了Python,因此它可以轻松地与Python生态系统(包括NumPy、SciPy和Matplotlib)协同工作。

社群和生态系统:由于其灵活性和易用性,PyTorch赢得了大量开发者和研究人员的喜爱。这导致了一个活跃的社群以及大量的第三方库和工具。

多平台和多后端支持:PyTorch不仅支持CPU,还支持NVIDIA和AMD的GPU。它也有一个生产就绪的部署解决方案——TorchServe。

丰富的预训练模型和工具箱:通过torchvision、torchaudio和torchtext等库,PyTorch提供了丰富的预训练模型和数据加载工具。


一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值